Influence of the pH on structural and optical properties of TiO₂ nanoparticles: applicable in dye sensitized solar cells

Morteza Asemi, Saeedeh Maleki and Majid Ghanaatshoar

Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 1983963113, Tehran, Iran

Abstract- In this paper, TiO₂ nanoparticles are prepared by sol gel method and the effect of initial solution pH on the structural and optical properties as well as particle size is investigated. Results show that pH<3 leads to anatase structure which is highly desirable in dye sensitized solar cells. In addition, for pH=2 we get the smallest particle size that is more suitable for dye solar cell applications. The obtained optical band gap energy for these nanoparticles is about 3.95 eV.

Keyword- TiO₂ nanoparticles, sol gel, pH, band gap.
1- مقدمه

دی اکسید پتیلوم از نیتراسیاهی اکسیدی شفاف با گاف انرژی پهن ابت که به دلیل فعالیت فوتوناتانسیستم و پایداری شیمیایی بالا، سیم نشون و هزینه نسبتاً پایین ساخت برای گاریگری در فوتوناتانسیستم، سلوهای خورشیدی، حسگرهای گازی و دستگاه‌های الکترونیکی نوری، توجه زایدی را به جدول کرده است [9]. طراحی TiO۲ تا ساختن پلت سطحی در تاریخچه تحقیقات در زمینه نوری نمایندگی مورد نظر در دهه‌ها ساختار اندازه می‌شود و تحقیقاتی در مورد UV-VIS اشعه X و تحقیقاتی در مورد خواص اینکتی این نانوذخ با طیف سنج تجربی و تحقیق قرار گرفتند.

2- بحث و نتایج

آماده‌سازی نانوذخات Ti۴O هر طور موتور از طریق هیدرولیز و تراکم آلکوکسیدی تیتانیوم در محیط آبی انجام می‌شود. در حضور مولکولهای آب، تراکم هیدرولیز و پس از انتقال اتفاق می‌افتد. در زیر واکنش‌های دارکر در فاصله سل-زل، به اختصار اورده شده‌اند:

\[\text{Ti(OH)}_4 \rightarrow \text{TiO}_2 + 2\text{H}_2\text{O} \]

(1) هیدرولیز

\[\text{Ti(OH)}_4 \rightarrow \text{TiO}_2 + 2\text{H}_2\text{O} \]

(2) تراکم

\[\text{Ti} + \text{OH}^{-} \rightarrow \text{Ti}^3+ + \text{H}_2\text{O} \]

(3) واکنش-نیتراسیم و واکنش

\[\text{TiO}_2 + \text{H}_2\text{O} \rightarrow \text{TiO}_2\cdot\text{H}_2\text{O} \]

(4) شیمیایی

\[\text{TiO}_2 \cdot n\text{H}_2\text{O} \]

(5) واکنش-ناپذیر

(6) واکنش

در این مقالات از روش شیمیایی سل-زل برای تولید تیتانیوم تراکم‌دهنده TiO۲ استفاده می‌کنیم. بستگی اپرسانسیتوانای نانوذخات TiO۲ با افزایش pH و تغییر pH در محیط به رشد بررسی تأثیر می‌کند. نکته‌های این مقاله، اینکتی این نانوذخ با طیف سنج تجربی و تحقیق قرار گرفتند.

1 Particle Size Analysis
2 Olation
3 Oxolation
4 Deoxidation
پیشیویم کنفرانس اینترنتی فوتوتکنیک ایران به همراه ششمین کنفرانس مهندسی و فناوری فوتوتکنیک ایران

![شکل 3: نمودار توزیع اندازه نانوذرات TiO۲ در pH=3](image)

روش فاز آناتاس نانوذرات TiO۲ در طول آزمایش Mi-۲ اندازه بلورک‌های نانوذرات TiO۲ اثر pH بر این اورانی.

حرارتی مورد بررسی قرار گرفت. شکل ۳ نمونه‌های بودی TiO۲ اشعه X تکلس شده در دمای ۴۰۰ درجه سانتی‌گراد در محدودیت ۵۰۰ تا آنالیز شد. در محصول ۵ عدد توانی گرفت. در این محصولات به طور خلاصه در جدول ۱ نشان داده شد. اندازه بلورک‌ها با استفاده از معادله‌های ترمیمی Mi-۲

![شکل ۴: نمودار توزیع اندازه نانوذرات TiO۲ در pH=3 (A) و pH=2 (B) pH=۱ (C)](image)

که در آن D اندازه بلورک بر حسب λnm طول موج تابش و β به حساب پرای بر حسب درجه β؟ برای گرفته قله در نصف ارتفاع پیشینه (FWHM) بر حسب رادیان و برای یا ۸/۹ است. نتایج این محاسبات در جدول ۱

![شکل ۵: نمودار توزیع اندازه نانوذرات TiO۲ در pH=3 (A) و pH=2 (B) pH=۱ (C)](image)

تهمگونه که در شکل دیده می‌شود. نانوذرات TiO۲
نتیجه‌گیری
در این مقاله نانوذرات TiO2 با هیدرولیز تیتانیوم تراز ایزوپروپیل‌تره‌سید شده‌اند. اثر pH محلول اولیه بر خواص ساختاری و اپتیکی و اندازه ذرات مورد بررسی قرار گرفته. نتایج نشان داد که در pH ساختار آنان را به‌دست می‌دهد و بر اساس از ۳ فاز آمورف را تشکیل داد. درات مستز شده در pH=۲، کوچکترین اندازه ذرات و بزرگ‌ترین گراف انرژی در حدود ۹۵ eV/۲ را نتیجه دادند.

مرجع

نحوه انرژی فوتون (hυ) برای انرژی pH=۱ از طرف جذبی بسته می‌آید. نمودار (ahu)۲ (br حسب (hυ) ۲ در شکل ۱، ۳ و ۵ در این مقاله بر‌پایه pH=۱۰۲،۲ و pH=۳ ابتدا و pH=۴ انرژی به دو روش دیگر داده گاه آندازه‌گیری اندازه ذرات در توانایی همگونی گاه انرژی افزایش می‌پاید که به دلیل اثرات اندازه کوانتومی است.