Influence of the pH on structural and optical properties of TiO$_2$ nanoparticles: applicable in dye sensitized solar cells

Morteza Asemi, Saeedeh Maleki and Majid Ghanaatshoar

Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 1983963113, Tehran, Iran

Abstract- In this paper, TiO$_2$ nanoparticles are prepared by sol gel method and the effect of initial solution pH on the structural and optical properties as well as particle size is investigated. Results show that pH=3 leads to anatase structure which is highly desirable in dye sensitized solar cells. In addition, for pH=2 we get the smallest particle size that is more suitable for dye solar cell applications. The obtained optical band gap energy for these nanoparticles is about 3.95 eV.

Keyword- TiO$_2$ nanoparticles, sol gel, pH, band gap.
1- مقدمه

دبی اکسید تیتانیوم از نیورسانالهای اکسیدی شفاف با گاف انرژی پهن است که به دلیل فعالیت فوتوناتالیستی و پایداری شیمیایی بالا، سی میکرو و هژئونی نسبتاً پایین

ساخت برای کارکردهای فوتوناتالیستی، سلول‌های خورشیدی، حس‌هایی غازی و دستگاه‌های الکترونیکی

نوری توانا بوده یا تا جلو کرده است [1].

درای سه ساخت بال‌انالایز (هژگونال) روتبلی

(هژگونال) و پرکبیت (پیروپورزبیک) است.

فاز آنلایز به آسای و تحت عملیات حرابی بیت فاز روتبلی پایدار تبدیل

می‌شود [آ] و (فاز روتبلی) و (فاز آنلایز) است [آ] و با کچکر

شنود آنلایز، گاک اکسیدی این ماده به دلیل وجود

اکسید آنالایز کاتیونی بزرگتر که می‌شود. خواص فیزیکی و شیمیایی

پلوسی به روش تیتانیوم محترم شده

است که روش سلژ به دلیل خلوص بالا، یکپناختی

خوب نمونه‌سازی را به طور مورد تجربه و تحقیق

موکول‌های راه بازی مدل سلژ را افزایش می‌ده.

در این مقاله از روش شیمیایی سلژ-زئور رولیت

اینکات نتانوتروپکسید (TTIP) است که در پیشنهاد

ساخت زئور نتانوتروپکسید (Zr) به طور همزمان در حلول هسته‌ای و رشته ادامه

داشتی باشد که منجر به تشکیل اکسید امور

موکول‌های آب شکل گرفته طبق واکنش (2) به

شیمیایی نبوده و بر روی آن روانی ندارد. بنابراین اگر اکسید آبی

موکول‌های آب TiO۲n، n می‌تواند به طور همزمان در حلول هسته‌ای و رشته ادامه

دایش باشد که منجر به تشکیل اکسید امور

موکول‌های آب TiO۲n، n. شرایطی (آ) شرایطی (آ)

موکول‌های آب TiO۲n، n می‌تواند به طور همزمان در حلول هسته‌ای و رشته ادامه

ویاسته به شرایط آزمایش است. بسته به شرایط آزمایش،

رژیم TiO۲n، n منجر به فاز آنالایز و روتبلی می‌شود.

در محلول pH می‌تواند نکات سهیل شود. این کاتل منجر به

تغییر pH و نکات‌آب کاتل شود. این کاتل منجر به

۲۶۲ ۲- روش ساخت

تکنیک تیتانیوم نتانوتروپکسید (TTIP) است که در پیشنهاد

و آب مقرت برای تهیه نتانوتروپکسید (TTIP) است که در پیشنهاد

باید تغییر pH کاتل محول pH

ساخته استفاده کرد. تکنیک فوتی قبلاً برای ساخته استفاده

مناسب در همزمان مغناطیسی به دقت بکسپ ساخت هم زده

1 Particle Size Analysis
2 Olation
3 Oxolation
4 Deoxidation
بسیاری کنفرانس اینتیک و فتوتکیک ایران به همراه ششمین کنفرانس مهندسی و فناوری فتوتکیک ایران

شکل ۳: نمودار توزیع اندازه‌های نانوذرات TiO۲ در pH=۳

شکل ۱: اندازه نانوذرات TiO۲ تنظیم شده در pH=۲ (C) و pH۲ (B). pH۱ (A) مختل در pH۲

رسوب فاز اندازه نانوذرات TiO۲ در طول آزمایش می‌شود.

[۱] بر اساس pH برای اندازه پایه‌های نانوذرات TiO۲. ابتدا از این pH حائز مورد بررسی قرار گرفت. شکل ۱ از pH برای X روش تکلیس ضریب pH تکلیس‌های در دمای ۵۰۰ درجه سانتی‌گراد در محدوده ۲۰۰–۶۰۰ درجه راه‌برد می‌باشد. همان طور که در شکل ۱ می‌بینیم در ۴۸ و ۸۰ درجه قله‌هایی در الگوی پاتی گزارش شده است که با افزایش pH می‌گذرد. پاتی‌های قله‌های افزایش و در نتیجه اندازه پایه‌های تکلیس کاهش می‌یابد.

نتایج بر سرده‌ایانه شیمی‌دانان می‌دهد که محول pH بالاتر از ۳ پاشیده‌ها به ۳. pH زیر ۳ به عنوان فاز وظیفه‌ای تاثیرگذار می‌شود. موارد مذکور به طور خلاصه در جدول ۱ نشان داده شده‌اند. اندازه پایه‌های تکلیس‌های با استفاده از معادله‌های دی‌تربیت تی کوش [۱]

\[D = kA/\beta \cos \theta \]

که در آن D اندازه پایه‌های تکلیس nm Bragg بر حسب \(\beta \) nm اندازه پایه‌های تکلیس از زاویه \(\beta \) بر حسب درجه \(\beta \) به‌طور قله در نصف ارتفاع برشیدن (FWHM) بر حسب رادیان و \(\beta \) برای با \(\beta \) در جدول ۱ انتخاب \(\beta \) از این محاسبات در اجوده است. بر اساس این ترتیب افزایش pH اندیشه بلورگاه‌ها افزایش می‌یابد

در شکل ۴، نمودار اندازه‌های TiO۲ در حین آزمایش

همانگونه که در شکل دیده می‌شود، نانوذرات TiO۲ در

۲۶۲
نتیجه‌گیری
در این مقاله نانوذرات TiO$_2$ با هیدروکلریت تیتانیوم تزرای ازروپویکسید نده شدن. اثر pH محلول اولیه بر خواص ساختاری و اینتاکی و اندازه ذرات مورد بررسی قرار گرفت. نتایج نشان داد که در pH ساختار آتانز را بسته می‌دهد و سپس از ۳ فاز آمورف را تشکیل داد. ذرات سنتز pH و شده در pH=۲، کوچکترین اندازه ذرات و پزگرینگ و گاف ائزی در حدود ۲/۵۵۹۵ eV ۳/۳ را نتیجه دادند.

مراجع

شکل ۳: طیف جذبی نانوذرات TiO$_2$. نمونه‌های فردی، E$_g$ گاف اینتاکی و n برای گازهای مستقیم، ۵/۵ و برای گذار غیر مستقیم ۲ است. ضریب جذب α از طیف جذبی بسته می‌آید.

مقدار (ahu)2 بر حسب (hv) در شکل ۴ در این برای pH=۳/۵۵ ۲/۵۵۶ eV ۳/۵۵۹۵ eV گاز ائزی در pH=۳ و در pH=۳ ۲/۵۵۶ eV گاز پرگرگری را نسبت به دو حالت دیگر دارد که با نتایج اندازه‌گیری اندازه ذرات در توان هست. با کوچک‌ترین شدن اندازه ذرات، گاز ائزی افزایش می‌یابد که به دلیل اثرات اندازه کوانتومی است.

شکل ۴: نمونه‌های (ahu)2 بر حسب ائزی فونتو (hv) برای نانوذرات TiO$_2$.