Long-time Quasilinear evolution and saturation of free electron laser in Raman regime

Chakhmachi Amir and Ataeiseresht laleh

Nuclear Science and Technology Institute, Plasma Physics and Nuclear Fusion Research School

Abstract- The long-time quasilinear evolution of the electron beam distribution function and the spectral energy density in a free-electron laser in presence of the space charge wave is investigated. The long-time quasilinear evolution of system is investigated within the context of a simple “water-bag” model for distribution function. A broad spectrum of waves is assumed in order to have a relatively wide range of resonant particles. By means of the Vlasov-Maxwell equation the long time quasilinear evolution of the mean electron momentum, the momentum spread, the spectral energy density, the beam energy and the efficiency of free electron laser are derived in Raman regime.

Keywords: quasilinear evolution, free electron laser, Raman regime, efficiency, saturation
مقدمه
بررسی تحلیل هدف و اشتباههای الکترون آزاد جهت هدفمندی و از نظر عملی و آزمایشگاهی دارای اهمیت بسیار زیادی می‌باشد. از طریق این بررسی، بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی و گسترده‌ای از امواج بانکی می‌شود. اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است. هنگامی که چگالی الکترون آزاد کم بوده و انرژی الکترون برای استفاده از روش‌های بهینه سازی و بازده سیستم مشخص شده و میزان راهبردهای جهت افزایش بازده سیستم پیشنهادی کرد. زمانی که طیف گسترده‌ای از امواج بانکی می‌شود، اشتباه از طریق تحلیل شبه خم صورت می‌گیرد. نمایندگان الکترون آزاد در دو روش انفک افتاده و قابل بررسی است.
پیش‌بینی کنفرانس آینه و فوتونیک ایران به همراه تشریح کنفرانس‌های ماهنی و فناوری فوتونیک ایران

مطالعه نمودیم. این توابع (1)ـ(4) تابع توزیع

\[G_0(p_z,t) = \frac{1}{2\Delta(t)} \left| p_z - p_0(t) - \Delta(t) \right| \left(p_z - p_0(t) + \Delta(t) \right) \]

(8)

بکه در این رابطه ممتنوی اینکینگ مانندتی \(p_0(t) \) به صورت زیر

\[p_0 = \left(\frac{\partial}{\partial p} G_0(p_z,t) \right) \]

(9)

و نیم پهنای به ریشه مانگین مرعی ممتنوی با استفاده از رابطه

\[<(p_z - p_x)^2> = \int_{-\infty}^{\infty} dp_x dp_z G_0(p_z,t) = 1/3\Delta(t) \]

(10)

مرتبه مورث. ملاحظات مربوط به تابع توزیع (9) نشان می‌دهد که بازه زمانی غیر توزیع می‌شود با بررسی \(\Delta(t) \), \(p_0(t) \) به روش ویژه ممتنوی ماورت. عبارات توزیع زمانی ممتنوی \(p_0(t) \) با استفاده از عادات (3) و (9) و انگول گیری روی \(p_z \) به دست می‌آید:

\[\frac{dp_0(t)}{dt} = -\int D(p_z,t) \frac{\partial G_0}{\partial p_z} \]

(11)

که در این رابطه داریم:

\[\frac{\partial G_0}{\partial p_z} = \frac{1}{2\Delta(t)} \left[\delta(p_z - [p_0(t) - \Delta(t)]) - \delta(p_z - [p_0(t) + \Delta(t)]) \right] \]

(12)

علاوه بر این برای نشان دادن ممتنوی اینکینگ \(p_0(t) \) ما از عادات (10) و (9) به مرحله گرایی که این

\[\Delta(t) \frac{d\Delta(t)}{dt} = -3p_0(t) \frac{dp_0(t)}{dt} = -3 \int D(p_z,t) \frac{\partial G_0}{\partial p_z} \]

(13)

با فرض اینکینگ موج پراکندگی را به جلو غیر تشکیل و مو ج پراکندگی به سمت غیر تشکیل است و با یاب

\[|\Delta(t)| \frac{d\Delta(t)}{dt} = a_{\omega k}^2 \]

(14)

به عنوان به صورت زیر به دست خواهد آمد:

\[\Delta(t) \frac{d\Delta(t)}{dt} = -3p_0(t) \frac{dp_0(t)}{dt} + \int D(p_z,t) \frac{\partial G_0}{\partial p_z} \]

(15)

با استفاده از تابع توزیع

\[D(p_z,t) = \frac{\partial}{\partial p_z} G_0(p_z,t) \]

(16)

به عنوان به طور مشابه با در نظر گرفتن مدل "water bag" (در مورد میکروسکوپی با در نظر گرفتی

اگزود با استفاده از تابع توزیع

\[\text{water bag} \]

مراجع [1] و [2] نشان می‌دهد که در شرایط تشدید ضعیف قرارگیری شده خصیق سبب هم‌ارسانی و تشکیل

\[\text{plateau} \]

در ناحیه تشدید در تابع نایبی اکتیون \(G_0(p_z,t) \) به مونک با مشابه با در این ناحیه است. آگزود

\[\Delta(t) \frac{d\Delta(t)}{dt} = -3p_0(t) \frac{dp_0(t)}{dt} + \int D(p_z,t) \frac{\partial G_0}{\partial p_z} \]

(17)

زاورلی که گفته که در این پس از شکل گیری سطح

\[\text{water bag} \]

به عنوان به طور مشابه با در نظر گرفتی

\[\text{plateau} \]

در مدت زمان
در اینجا زمان نرمال‌بر زمان

t' = t / T_0

در تعریف

T_0 = \lambda_0 / c = 2\pi / \epsilon_0

می‌شود به صورت تعریف

\Delta' = \lambda_0 / \epsilon_0

پوست‌های دیگر. کمیت‌های

\lambda_0 / \epsilon_0

به ترتیب به مقادیر

\Delta' / mc

و \rho_0 / mc

شده است.

e_{0}(t) = \frac{1}{2\pi} \left[(\omega_0^2 + \gamma_0^2) + c^2 (k - k_0)^2 + 2e^2 c^2 k \right]^{-1/2} \times \frac{\rho_0(t)}{c (k - k_0) \omega_0^2}

(16)

پوست را به:

\frac{\partial e_{0}(t)}{\partial t} = 2\gamma_0^2(t) e_{0}(t)

(17)

نتیجه می‌شود: عبارت لازم برای تجول زمانی ممنتو

میانگین با جایگذاری معادلات (16)، (17) و (15) در معادله (11) به شکل زیربودست می‌آید:

\eta(t) = \frac{\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \left(\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \right)^2}{\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \left(\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \right)^2}

(18)

بکنه دیده می‌شود عبارت از تغییرات نیم پهنای (\Delta) نسبت به زمان داریم:

\frac{d \Delta(t)}{dt} = \frac{12 \pi \rho_0^2}{\Delta_0^2} \frac{1}{\epsilon_0^2}

(19)

به همین روش برای تغییرات نیم پهنای (\Delta) نسبت به زمان داریم:

\eta(t) = \frac{\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \left(\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \right)^2}{\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \left(\frac{\rho_0(t)}{c (k - k_0) \omega_0^2} \right)^2}

(20)