Abstract- The long-time quasilinear evolution of the electron beam distribution function and the spectral energy density in a free- electron laser in presence of the space charge wave is investigated. The long-time quasilinear evolution of system is investigated within the context of a simple “water-bag” model for distribution function. A broad spectrum of waves is assumed in order to have a relatively wide range of resonant particles. By means of the Vlasov- Maxwell equation the long time quasilinear evolution of the mean electron momentum, the momentum spread, the spectral energy density, the beam energy and the efficiency of free electron laser are derived in Raman regime.

Keywords: quasilinear evolution, free electron laser, Raman regime, efficiency, saturation
رژیم رامان (چگالی پرتو ذرات بالا و انرژی پرتو کم است) مورد بررسی و مطالعه قرار داشته است.

۲ مدل فیزیکی

پرتو الکترونی نسبیتی چگال و بدون ترخوردن را در نظر بگیرید که در راستای محور $z$ در داخل یک میدان $B_0 = -B_0 \cos k_0 z, B_0 = -B_0 \sin k_0 z$ مغناطیس جریب $B_m$ در حال انتشار است. که در رابطه دامنه میدان پیچشی و $\frac{2\pi}{k_0}$ طول موج توند تابش لیزر الکترون آزاد است. اساس مدل شه خطي بر پایه معادلات غیر خطی و نسبیتی ولسهو - ماکسول برای یک دسته شخصی از توابع توزیع پرتو ذرات به سکوت نشان دهنده $\phi (z, p, t) = n_0 (p_0, t) = G_z (p, t)$ شده است که در آن

$$G_z (p, t) = \frac{2L}{\pi^2} \int dz G_z (z, p, t)$$

(۱)

با طول تناوب $2L$ هستند مورد بررسی قرار گرفته است. اگر از معادله غیر خطی ولسهو روحی طول تناوب استاتیکی $2L$ مایاگین گری شود، حلول زمانی نابع توزیع مایاگین به شکل $G_0 (p, t)$ حاصل می‌شود:

$$\frac{\partial G_0}{\partial t} + \frac{\partial G_0}{\partial t} - G_0 + p_m \frac{\partial G_0}{\partial z} - \frac{\partial G_0}{\partial t} > 0$$

(۲)

و زمانی که فقط اندرکشف‌های خطی در نظر می‌گیرد که توزیع کلیاً تابع توزیع اختلالی را برای اختلالی کوچک به دست می‌دهد:

$$\frac{\partial G_0}{\partial t} + p_m \frac{\partial G_0}{\partial z} - \frac{\partial G_0}{\partial t} - \frac{\partial G_0}{\partial t} G_0 = 0$$

(۳)

استیتیکی زمانی کمیت اختلالی به صورت $\exp (-\int dt' (\omega(k') t' + \gamma(t'))$ نظر گرفته این فرضیات طبقاً با مرجع [۳] می‌توان معادلات غیرخطی را برای تابع توزیع مایاگین به صورت $E_z \neq 0$ و $\delta \phi \neq 0$ تحول شبه خطی بلند مدت لیزر الکترون آزاد نامیده شود. به طور کامل مورد بررسی قرار گرفته است. استاتیکی که در اندازه‌ی ولسهو - ماکسول برای این اساس است که که به اشکال کمیت اختلالی لیزر الکترون مایاگین تقویت و اشباع این ماکسیمم به شکلی به صورت است. این تابع نهایی که از استاد لیزر الکترون شروع می‌شود، تحول شبه خطی بلند مدت لیزر الکترون آزاد نامیده می‌شود. به طور کامل مقدار $E_z \neq 0$ و $\delta \phi \neq 0$ تحول شبه خطی بلند مدت ماکسیمم تقویت لیزر الکترون آزاد را در
به اصطلاح، یکی از این برای پیش بینی گذاری می‌باشد:

$$H_0(p_z,t)$$

و چگالی احرار تقیت اختلالات را به دست ارائه می‌دهد:

$$\frac{\partial}{\partial t} G_0(p_z,t) = \frac{\partial}{\partial p_z} \left( D(p_z,t) \frac{\partial}{\partial p_z} G_0(p_z,t) \right)$$

بدست می‌آید که در این رابطه (5) ضرایب پخش در فضای ممتنوم است و با استفاده از رابطه زیر معرفی می‌شود.

$$D(p_z,t) = \sum_{i=1}^{N} k_i^2 \left\{ \frac{\partial H_i}{\partial t} \left( \frac{\Omega_i}{\Omega_{0i}} \right)^2 \right\}$$

تحول زمانی هاملونی قابلیت اختلالات در مدلی که در این رابطه (5) با استفاده از تجزیه فوریه، واگر دارای نور گرفتن اختلال وابسته به زمان، دارد خلل شده و لاحق رابطه پاشندگی در این مورد از توزیع پیش ارائه شده می‌باشد.

$$\frac{\partial}{\partial t} \left| \frac{\partial H_i}{\partial t} \right|^2 = 2\gamma_i |\frac{\partial H_i}{\partial t}|^2$$

با استفاده از تزریق فوریه، واگر در این رابطه (6) با استفاده از تجزیه فوریه، واگر دارای نور گرفتن اختلال وابسته به زمان، دارد خلل شده و لاحق رابطه پاشندگی در این مورد از توزیع پیش ارائه شده می‌باشد.

$$\frac{\partial}{\partial t} \left| \frac{\partial H_i}{\partial t} \right|^2 = 2\gamma_i |\frac{\partial H_i}{\partial t}|^2$$

با استفاده از تزریق فوریه، واگر دارای نور گرفتن اختلال وابسته به زمان، دارد خلل شده و لاحق رابطه پاشندگی در این مورد از توزیع پیش ارائه شده می‌باشد.

$$\frac{\partial}{\partial t} \left| \frac{\partial H_i}{\partial t} \right|^2 = 2\gamma_i |\frac{\partial H_i}{\partial t}|^2$$

با استفاده از تزریق فوریه، واگر دارای نور گرفتن اختلال وابسته به زمان، دارد خلل شده و لاحق رابطه پاشندگی در این مورد از توزیع پیش ارائه شده می‌باشد.

$$\frac{\partial}{\partial t} \left| \frac{\partial H_i}{\partial t} \right|^2 = 2\gamma_i |\frac{\partial H_i}{\partial t}|^2$$

با استفاده از تزریق فوریه، واگر دارای نور گرفتن اختلال وابسته به زمان، دارد خلل شده و لاحق رابطه پاشندگی در این مورد از توزیع پیش ارائه شده می‌باشد.
در اینجا زمان نرمال‌بندی \( t' = t/T_0 \) به صورت
\[ T_0 = 
\begin{cases} 
\frac{\lambda^2}{c} & \text{برای } p_0' \text{ تعریف می‌شود} \\
\frac{\lambda^2}{c k_0} & \text{برای } p_0' \text{ به ترتیب به مقدار} \\
\Delta' & \text{می‌گردد. کمیت‌های } \lambda, c, k_0 \text{ به دست نمایش داده شده است.}
\end{cases}
\]

\[
D(p_0', t) = 2e^2 \sum_{n} \left[ \frac{a_n^2}{2t^2} + \frac{a_n^2 \eta_{n}^2}{2k^2 D_f} \right] - 2\frac{a_n^2}{2t^2} \frac{a_n^2 \eta_{n}^2}{2k^2 D_f} \left( \frac{k^2}{\eta_{n}^2} \right)
\]

\[
\eta_{n}(t) = \frac{\sum_{i=0}^{n} \eta_{i}(0) - \eta_{i}(0)}{n\eta_{n}(c - k_0) a_0^2}
\]

\[
\eta_{i}(0) = \frac{n\eta_{m} c^2 - \sum_{i=0}^{n} \eta_{i}(0)}{m (c - k_0) a_0^2}
\]

\[
\frac{d\eta_{i}(t)}{dt} = 2\eta_{i}(t) - 2\sum_{j=0}^{n-1} \eta_{j}(0)
\]

\[
\eta_{i}(0) = \frac{2n\eta_{n} c^2 - \sum_{j=0}^{n-1} \eta_{j}(0)}{m (c - k_0) a_0^2}
\]

\[
\frac{d\eta_{i}(t)}{dt} = 2\eta_{i}(t) - 2\sum_{j=0}^{n-1} \eta_{j}(0)
\]

\[
\eta_{i}(0) = \frac{2n\eta_{n} c^2 - \sum_{j=0}^{n-1} \eta_{j}(0)}{m (c - k_0) a_0^2}
\]

\[
\eta_{i}(0) = \frac{2n\eta_{n} c^2 - \sum_{j=0}^{n-1} \eta_{j}(0)}{m (c - k_0) a_0^2}
\]

\[
\frac{d\eta_{i}(t)}{dt} = 2\eta_{i}(t) - 2\sum_{j=0}^{n-1} \eta_{j}(0)
\]

\[
\eta_{i}(0) = \frac{2n\eta_{n} c^2 - \sum_{j=0}^{n-1} \eta_{j}(0)}{m (c - k_0) a_0^2}
\]