Long-time Quasilinear evolution and saturation of free electron laser in Raman regime

Chakhmachi Amir and Ataeiseresht laleh

Nuclear Science and Technology Institute, Plasma Physics and Nuclear Fusion Research School

Abstract- The long-time quasilinear evolution of the electron beam distribution function and the spectral energy density in a free-electron laser in presence of the space charge wave is investigated. The long-time quasilinear evolution of system is investigated within the context of a simple “water-bag” model for distribution function. A broad spectrum of waves is assumed in order to have a relatively wide range of resonant particles. By means of the Vlasov-Maxwell equation the long time quasilinear evolution of the mean electron momentum, the momentum spread, the spectral energy density, the beam energy and the efficiency of free electron laser are derived in Raman regime.

Keywords: quasilinear evolution, free electron laser, Raman regime, efficiency, saturation
بررسی تحلیل غیرخطی و اشکال لیزه‌ای الکترون آزاد جهت احساس نظری و چه از نظر عملی و آزمایشگاهی دارای اهمیت سیاسی زیادی می‌باشد. از طریق این پرسی‌ها، باید سیستم مشخص شده و هم‌چنین راهکارهای جهت افزایش سیستم پیشنهادگر کرده. زمانی که طیف گسترده‌ای از امواج براییکنیتی ماله اشکال یافته بر طور تحلیل شه جهت صورت می‌گیرد. نامی‌لیز الکترون آزاد در دو رزیم انقباس فعال و قابل بررسی است. هنگامی که چگالی پرتو درد کم بوده و انرژی پرتو بالاست سرعت میانگین ذرات پایین است، می‌باشد. پس تحریک نشده و ذرات از طریق موج پانرامیتو از نواحی شکستگی شرکت می‌کند این رزیم کاری نامی‌لیز الکترون آزاد در دو رزیم رمان انتقاد اتفاده و قابل بررسی است. هنگامی که چگالی پرتو درد کم بوده و انرژی پرتو بالاست سرعت میانگین ذرات پایین است، می‌باشد. پس تحریک نشده و ذرات از طریق موج پانرامیتو از نواحی شکستگی شرکت می‌کند این رزیم کاری نامی‌لیز الکترون آزاد در دو رزیم رمان انتقاد اتفاده و قابل بررسی است.

۲- مدل فیزیکی
پروتو الکترونی نسبتی چگال و بدون خروجی در نظر گرفته می‌گردد که در سطح کناره a در داخل پیک میانگین‌گر خشکی

\[B_0 = -B_{\text{cos}k_z z} + B_{\text{sin}k_z z} \]

\[B = \text{const} \]

در حال انتشار است. که در این رابطه

\[\text{دمانه میدان بخشی و} \quad \frac{\pi}{k_0} \left(\frac{\text{طول موج}}{\text{طول موج}} \right) \]

تایب لیز الکترون آزاد است، اساس مدل شه خطر بر پایه معادلات غیرخطی و نسبتی ولاتری-ماکسکل برای یک دسته مشخص از تناوب توزیع پرتو ذرات به شکل

\[f_0(z, p_z, t) = n_0(p_z) \exp(i\omega(z, p_z) G(z, p_z, t)) \]

شده است که در آن

\[G_z(b, z, p_z) = \frac{1}{2L} \int dz G(z, p_z, t) \]

با طول تناوب 2L هستند مورد بررسی قرار گرفته است. اگر از معادله غیرخطی الکترون آزاد برای پسپسیل به وسیله‌های میدان‌های اخلاقی که ترکیبی به آرام نیم‌گیر

\[\frac{\partial G_z}{\partial t} < G_z = \frac{\partial}{\partial p_z} = \frac{\partial}{\partial z} = \frac{\partial}{\partial z} > \]

و زمانی که فقط اندرکاهش خطر در نظر گرفته شود معادله غیرخطی شده ولاتری-ماکسکل گردد که تا هر زمانی که تابع توزیع اختلالی را برای اختلال قوی به دست می‌دهد

\[\frac{\partial G_z}{\partial t} + \frac{p_z}{\gamma m} \frac{\partial G_z}{\partial z} - \frac{\partial}{\partial z} H \frac{\partial G_z}{\partial p_z} = G_z(t) \]

این مثال یک میدان کمیت اختلالی به صورت

\[\exp(-i \int \frac{dV}{\theta} (\alpha_l (t) + i \gamma_l (t))) \]

نظر گرفتن این فرضیات مطلوب با مرجع [۳] می‌توان معادلات غیرخطی را برای تابع توزیع میانگین آزمایشگاهی دارای اهمیت سیاسی زیادی می‌باشد. از طریق این پرسی‌ها، باید سیستم مشخص شده و هم‌چنین راهکارهای جهت افزایش سیستم پیشنهادگر کرده. زمانی که طیف گسترده‌ای از امواج براییکنیتی ماله اشکال یافته بر طور تحلیل شه جهت صورت می‌گیرد. نامی‌لیز الکترون آزاد در دو رزیم انقباس فعال و قابل بررسی است. هنگامی که چگالی پرتو درد کم بوده و انرژی پرتو بالاست سرعت میانگین ذرات پایین است، می‌باشد. پس تحریک نشده و ذرات از طریق موج پانرامیتو از نواحی شکستگی شرکت می‌کند این رزیم کاری نامی‌لیز الکترون آزاد در دو رزیم رمان انتقاد اتفاده و قابل بررسی است. هنگامی که چگالی پرتو درد کم بوده و انرژی پرتو بالاست سرعت میانگین ذرات پایین است، می‌باشد. پس تحریک نشده و ذرات از طریق موج پانرامیتو از نواحی شکستگی شرکت می‌کند این رزیم کاری نامی‌لیز الکترون آزاد در دو رزیم رمان انتقاد اتفاده و قابل بررسی است.

\[\frac{\delta E}{\delta p} \neq 0 \quad \text{و} \quad \frac{\delta E}{\delta p} \neq 0 \]

تحول شه خطری بند مدت لیز الکترون آزاد در خطر بند مدت مکانیسم تقویت لیز الکترون آزاد را دارد.
مطالعه نمودار. تابع توزیع (1) به صورت زیر است:
\[G_0(p_z,t) = \begin{cases} \frac{1}{2\Delta} |p_z - p_0(t)| & \text{für} \quad 0 \leq |p_z - p_0(t)| < \Delta(t) \\ 0 & \text{für} \quad |p_z - p_0(t)| \geq \Delta(t) \end{cases} \] (8)

به صورت زیر است:
\[p_0(t) = \int_{-\infty}^{\infty} dp_z G_0(p_z,t) \] (9)

و نم پهنایی با استفاده از رابطه
\[\langle p_z - p_z^2 \rangle = \int_{-\infty}^{\infty} dp_z (p_z - \langle p_z \rangle)^2 G_0(p_z,t) = 1/3\Delta(t) \] (10)

مربوط می‌شود ملاحظات مربوط به تابع توزیع (9) نشان می‌دهد که تابع زمانی تابع توزیع می‌تواند با بررسی \(\Delta(t) \) و جاجنگی طیف انرژی، مورد مطالعه قرار گیرد. عبارات تابع زمانی ممتنوی میانگین (7) با استفاده از معادلات (6) و (9) و انتگرال گیری روی \(p_z \) به دست می‌آید:
\[\frac{dp_z(t)}{dt} = -\frac{1}{3} \frac{\partial G_0}{\partial p_z} \] (11)

که در این رابطه داریم:
\[\frac{\partial G_z}{\partial p_z} = \frac{1}{2\Delta(t)} \delta(p_z - [p_0(t) - \Delta(t)]) - \delta(p_z - [p_0(t) + \Delta(t)]) \] (12)

علاوه بر این برای نشان دادن توسعه زمانی نم پهنای \(\Delta(t) \) ممکن است تابع بنمایی گیری که این تابع به شکل زیر به دست می‌آید:
\[\Delta(t) \frac{d\Delta(t)}{dt} = -3p_0(t) \frac{dp_z(t)}{dt} - \frac{1}{3} \frac{dp_z(t)}{dt} \frac{\partial G_0}{\partial p_z} \] (13)

با فرض اینکه موج پراکندگی شده رو به جلو گرفتند و موج پراکندگی شده سمت مقابل تشکیل باید عبارت دیگر باشد، او عبارت دیگر \(\Delta(t) \) استفاده از رابطه
\[\delta H_k \] عبارت از دارای
\[\delta H_k (k) = a_{\omega}(k) / 2c^2k^2 D_k \] (14)

سیستم به صورت زیر بیان شود:
\[\delta H_k = \left[\frac{eB_{0\omega}}{2mc^2k_0} - \left(a_{\omega} X_{\omega}(k) / 2c^2k^2 D_k \right) \right] \delta H_{\omega}(t') dt' \] (15)

بنابرین ضریب پخش به صورت زیر بدست آمده‌امد:

\[G_0(p_z,t) \] و چگالی انرژی تابع اختلالات را به دست می‌آورد. تابع زمانی به صورت [3]
\[\frac{\partial}{\partial t} G_0(p_z,t) = \frac{\partial}{\partial p_z} \left(D(p_z,t) \frac{\partial}{\partial p_z} G_0(p_z,t) \right) \] (4)

برهنه اینکه در این رابطه
\[D(p_z,t) = \sum_{k=1}^{\infty} \frac{\delta H_k}{(\Omega_k(t'))^2} \] (5)

تحول زمانی هاملتونی اختلالات نرمال‌زد شده (10) با مطلق است [1 و 2]
\[\frac{\partial}{\partial t} |\delta H_k| = 2\gamma_k |\delta H_k| \] (6)

با استفاده از تجزیه‌های اختلال و با در نظر گرفتن اختلال واسبته‌های زمانی و خلیف مواد و لاوی رابطه پاشندگی یکی روی را به صورت زیر حاصل می‌کنند:
\[c^2k^2 D_k(\Omega_k(t'))^2 = \frac{1}{2} \alpha_{\omega} \left(\Omega_k(t') \right)^2 \] (7)

که در این رابطه تابع
\[D_k \] تابع دی الکتریکی امواج عرضی و طولی و پذیرفته‌ای مغناطیسی مؤثر است [3 و 4]

بنابراین مجموعه معادلات (4) شرک کاملاً از معادلات

\[\text{2-1- تحول زمانی شب خطی لیزر الکترون} \]

water bag آزاد با استفاده از تابع توزیع

مراجع [1 و 2] نشان می‌دهد که در شرایط تشدید ضعیف قراردادهای شب خطی سریع سبب همراه‌سازی و تشکیل

plateau در ناحیه تشدید در تابع توزیع ذرات می‌شود که مطلوب با \(\Delta(t) \) در این ناحیه به اکثر

Solow نشان داد که اگر درگیر بیش از یک شبکه هم‌وار در تابع توزیع - و جاجنگی انرژی طیفی تابع

باینده که جداکننده تابع توزیع و جاجنگی انرژی طیفی تابع

زمانی شب خطی سیستم لیزر الکترون را در حضور

فیکتی پلاس تشکیل

waterطا و لیزر الکترون مدل

"bag
در اینجا زمان ترمالیزه به صورت

در معادله (20) (15) از طریق پارامترهای

به انتزاع حرکت میانگین ذرات مربوط می‌شود در نتیجه

به صورت زیر حاصل می‌شود:

به صورت زیر حاصل می‌شود:

که در آن

با در نظر گرفتن رابطه (17) رابطه زیر

نتیجه می‌شود. عبارت لازم برای تحلیل زمان

در معادله (11) به شکل زیر نوشت می‌آید:

در این مقاله دسته معادلات کامل و بسته ای (22)-(17)

به چهار توصیف کامل تحلیل شده کلیک الکترون آزاد

در زوریم زمان در زمان طولانی ارائه شد. با استفاده از حل

عددی این دسته معادلات، می‌توان چگونگی تحلیل تابع

تویزیج از تجربه زمانی بهنما و ارتباط آن، تحلیل مکانی

تابع تزیج انداد حرکت میانگین ذرات. چگونگی تغییر

انرژی پارکن و بارده سیستم را تا رسیدن به زمان اشباع

بررسی کرد. این مطالعه زمان دقیق اشباع انرژی برتو

دیگر در زمان اشباع و آن می‌تواند برای بررسی را

بدست می‌دهد. حک عدالتی است از هر چهار اثر هریک

از پارامترهای میدانی و بیان، تابع تزیج (از نظر شکل و

په شگذی در فضای فاز) جایگاه از آن نریزی اولیه

مفتونه را بر روی زمان اشباع و زمان بازه مکانیسم ارائه

می‌شود. با استفاده از نتایج بالا می‌توان مکانیسمی با

پارامترهای بهینه طراحی کرد که بارده آن بسیاری باشد.

مراجع

\[D(p_r, t) = 2\varepsilon^2 \left[\frac{\text{a}_r(X_0^{(q)2})^2}{2\gamma_e} + \frac{\text{a}_r(X_0^{(q)2})^2}{2\gamma} - 2\frac{\text{a}_r(X_0^{(q)2})^2}{2\gamma} \frac{\text{a}_r(X_0^{(q)2})^2}{2\gamma_e} \right] \times \frac{1}{\left(a_k - k \text{r}_D \text{c}_{\gamma} \text{n}_e \eta_{\gamma} \right)^2 + \left| \text{a}_k - k \text{r}_D \text{c}_{\gamma} \text{n}_e \eta_{\gamma} \right|^2} \]

\[\frac{\partial}{\partial t} \Delta (t) = (2\gamma_e t) P(t) \Delta (t) \]