کلیدزنی تمامنوری موج بیوسته در مزدوج موازی گرافنی براساس اثر غیرخطی کر
طبیعه بیدرگ، محسن حامی
دانشکده فیزیک، دانشگاه صنعتی شیراز، شیراز

چکیده - در این مقاله ابتدا معادلات حاکم بر انتشار موج را با استفاده از تئوری اختلال اول در یک مزدوج موازی غیرخطی گرافنی به دست آورده و با شبیه سازی انتشار موج در آن نشان داده می‌شود که می‌توان به یک کلیدزنی تمامنوری با نوی 7-3 میکرووات بر میلی‌متر برد طول 1.2 میکرومتر دست یافته. در محاسبات فرض شده که اثرهای غیرخطی و هر لایه گرافن از مزدوج موازی به عنوان یک اختلال بر روی ثابت دیگر اثر کره ویلی بر روی می‌انتشاری هر لایه اثر ندارد.

کلید وارد- طول اندازه‌گیری اثر غیرخطی کرکلیدزنی تمامنوری گرافن.

All Optical CW Switching in Graphene Directional Coupler Based on Nonlinear Kerr Effect
Tayebeh Bidbarg, Mohsen Hatami
Department of Physics, Shiraz University of Technology, Shiraz

Abstract- In this paper first we derive equation of CW wave propagation in graphene nonlinear directional coupler by using first order perturbation theory. By simulation of the wave propagation we have shown that it can be reached to an all optical self-switch within .3-7μWatt/mm at the length of 1.2μm. In this calculation it is supposed that the nonlinear effects and each graphene layer has affected as perturbation on the other layer but have no effect on each layer.

Keywords: Transfer length, Nonlinear Kerr effect, All Optical Switching, Graphene.
1- مقدمه
گرافن یک ساختار لاته زنبوری با پهنای یک اتم است که اولین بار در سال 2004 به روش مکانیکی از گرافیت جدا شده است [1]. ویژگی‌های منحصر به فرد آن، مانند رسانده‌گی الکتریکی، خاصیت‌گرایی، و افزایش بالای وسایل استحکام مکانیکی بالا باعث شده که نتیجه‌گیری‌هایی با راه خود جلب کند. ویژگی‌های مکانیکی این گرافن در نظرات و نیماتلیک، نیمه‌هادی و... کاربردی‌تر از آن در برای دستی‌گرایی تک تک یا گرافن بسته می‌آوریم. با توجه به تغییرات و جابجایی که به رابطه پاشندگی زیر می‌خوریم:

\[
\beta = k \left(\frac{\varepsilon}{\varepsilon_0} + \frac{2 \varepsilon_0}{2 \varepsilon_0} \right)
\]

در حالت غیرخطی جریان الکتریکی تابع زیر را برای تغییرات می‌آوریم:

\[
\bar{E} = (\sigma + \sigma N) \left(E \right) \hat{E}
\]

که به ترتیب به صورت زیر مستند است [4]:

\[
i \sigma = \frac{6 \varepsilon}{\varepsilon c} \left(\omega \omega + \omega \omega \omega \omega \right)
\]

در حالت غیرخطی اثرات طبیعی در دمای الکتریکی ممکن با ضربی که می‌تواند به صورت

\[
\sigma_{\text{NL}} = \sigma_{\text{NL}}(\omega, \omega, -\omega)
\]

در حالت اثرات طبیعی کر در تابع (7) در صورت زیر تعریف می‌شود [5]:

\[
\varepsilon(\theta) = \ln \left(\frac{2 \mu + \sigma}{2 \mu - \sigma} \right) + \left(\pi + \arctan \left(\frac{2 \mu + \sigma}{\sigma} \right) \right)
\]

از معادلات 1 و 2 شروع می‌گردد و با انجام عملیات ریاضی به معادله زیر رسیدم:

\[
\nabla H + \omega \mu \cdot H = \frac{i \sigma}{\omega c} \delta \left(x + \frac{d}{2} \right) H
\]

شکل 1: یک مزدوج موارد غیرخطی گرافنی که از دو لایه گرافن تشکیل شده است. لایه پایینی لایه یی (1) و لایه بالایی لایه یی (2)
به هدف یافتن کاهش مصرف و زیاده کردن کنترل‌گر، در این مقاله بررسی معادلات کویل شده در حالت موج بیضی و غیرپیشرفتی (\\(\\(i(\omega)\\)) است، در نتیجه از مشتقات زمانی در معادلات (13) صرف‌نظر می‌شود و با استفاده از معادلات حاکم بر انتشار موج در لایه‌ای باین و بالا به صورت زیر به دست می‌آید:

\[
\frac{\partial U}{\partial \xi} = \frac{1}{2} aL^2 U + \frac{L}{2} [\dot{U} - \frac{\pi}{2} U] \tag{14}\]

که در آن ضریب جذب غیرپیشرفتی است.

3-شیب‌سازی

با استفاده از معادله (14) انتشار موج را در مواد غیرپیشرفتی گرفته‌ای که کمک نرم‌افزار متلب بررسی می‌کنیم. شکل 2 (الف) نتیجه در طول مزود مواد غیرپیشرفتی باید توان ورودی 3 میکرووات بر میلی‌متر در لایه‌ای باین و بالا توان می‌دهد، به این تاوان کم هوش مختل به خطر جفت شدگی خروجی‌ای از لایه باین انجم می‌شود. شکل 2 (ب) و (ب) توان خروجی بر حسب توان ورودی به ترتیب در توان های 0-3 و 0-7 میکرووات بر میلی‌متر و فرکانس 228 حکایت رسم شده است. که با زیاد یادن توان، نقطه بحرانی و نقطه سوخته‌زنی نیز افزایش می‌یابد. در توان‌های باین خروجی از باین دارای و با کاهش توان خروجی از بالا داریم.

\[
\frac{i\sigma}{\omega} \frac{\delta(x^2 - d_x^2)}{\partial x} \frac{\partial \phi}{\partial x} - \frac{i}{\omega} \frac{\delta(x^2 - d_x^2)}{\partial x} \frac{\partial \phi}{\partial x} = 0 \tag{8}\]

\[
\frac{\partial (r, \omega - \omega_0)}{\partial z} = h(x) (z, \omega - \omega_0) \exp(\beta z) \tag{9}\]

\[
\frac{\partial C}{\partial \xi} + i\beta \frac{\partial C}{\partial t} - \frac{\beta}{2} \frac{\partial C}{\partial t} - i \frac{\beta}{6} \frac{\partial C}{\partial t} + g(\omega)C = 0 \tag{13}\]

\[
\frac{\partial i}{\partial t} + i\beta \frac{\partial C}{\partial t} - \frac{\beta}{2} \frac{\partial C}{\partial t} + g(\omega)C = 0 \tag{11}\]

\[
\frac{\partial (r, \omega - \omega_0)}{\partial z} = h(x) (z, \omega - \omega_0) \exp(\beta z) \tag{10}\]

در اینجا

\[
\Delta \beta = \frac{ik}{2\omega \epsilon_0} \left[\sigma + \frac{k\epsilon}{\omega e} \right] \tag{12}\]

با استفاده از تقریب \(\beta^2 = \beta_0^2 \approx 2\beta_0(\beta - \beta_0)\) و بسط

\[
\beta(\omega) = \beta(\omega) + \Delta \beta(\omega) \tag{11}\]

این معادله را به محدودیت زمان‌های بررسی شده می‌شود.

\[
\Delta \beta = \frac{ik}{2\omega \epsilon_0} \left[\sigma + \frac{k\epsilon}{\omega e} \right] \tag{12}\]

با استفاده از نوشتار (10) و بسط

\[
\beta(\omega) = \beta(\omega) + \Delta \beta(\omega) \tag{11}\]

این معادله را به معادله‌های زمان‌های بررسی شده می‌شود.

\[
\frac{\partial C}{\partial \xi} + i\beta \frac{\partial C}{\partial t} - \frac{\beta}{2} \frac{\partial C}{\partial t} + g(\omega)C = 0 \tag{13}\]

\[
\frac{\partial i}{\partial t} + i\beta \frac{\partial C}{\partial t} - \frac{\beta}{2} \frac{\partial C}{\partial t} + g(\omega)C = 0 \tag{11}\]

\[
\Delta \beta = \frac{ik}{2\omega \epsilon_0} \left[\sigma + \frac{k\epsilon}{\omega e} \right] \tag{12}\]
شکل ۳. قسمت (الف) به ترتیب توان بحرانی و توان سوئیچینگ در توان ورودی ۶ میکرووات بر میلی متر و (ب) به ترتیب توان بحرانی و توان سوئیچینگ در توان ورودی ۲ میکرووات بر میلی متر نشان می‌دهد.

۶- نتیجه‌گیری

به عنوان همیلت گرافن ابتدایاً با استفاده از نتایج آن اخلاصه‌ی اشتهای حرکتی و ذرات غیرخطی کر معادلات حرکت جریان در طول تونو موج در یک مذدوز موثر گرافنی بدست اورده‌یم و با شبیه سازی معادله‌ی اندازه‌‌ی موج به توجه به توان کم در حد ۰.۷ میکرو و طول ۷ میکرومتر رای کلیدزنی در مذدوز موثر گرافنی برای بررسی مدل‌های مجتمع تمام نوری دست‌پذیری در مقایسه با کلیدزندی فیزیک ابعاد فوق عاده کوچک می‌شود و از طرف نیاز کاهش می‌یابد.

مراجع

این مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد.