کلیدزنی تامانوری موج پیوسته در مزدوج موازی گرافن براساس اثر غیرخطی کر
طبیب بیدبرگ، محسن حانمی
دانشکده فیزیک، دانشگاه صنعتی شیراز، شیراز

چکیده - در این مقاله ابتدا معادلات حاکم بر انتشار موج را با استفاده از نظریه اختلال مربوطی اول در یک مزدوج موازی غیرخطی گرافنی به دست آورده و با شبیه سازی انتشار موج در آن مشابه به محاسبات فیزیکی برای میلی متر برای طول 1.2 میکرومتر دست یافته‌ایم. در محاسبات فرض شده که اثرات غیرخطی و هر لایه گرافن از مزدوج موازی به عنوان یک اختلال بر روی لایه دیگر اثر کرده ولی بر روی ماده اختلالی هر لایه اثر ندارد.

کلید واردات- طول انتقال، اثر غیرخطی کر، کلیدزنی تامانوری، گرافن.

All Optical CW Switching in Graphene Directional Coupler Based on Nonlinear Kerr Effect
Tayebeh Bidbarg, Mohsen Hatami
Department of Physics, Shiraz University of Technoloey, Shiraz

Abstract- In this paper first we derive equation of CW wave propagation in graphene nonlinear directional coupler by using first order perturbation theory. By simulation of the wave propagation we have shown that it can be reached to an all optical self-switch within 3-7μWatt/mm at the length of 1.2μm. In this calculation it is supposed that the nonlinear effects and each graphene layer has affected as perturbation on the other layer but have no effect on each layer.

Keywords: Transfer length, Nonlinear Kerr effect, All Optical Switching, Graphene.
1- مقدمه

گرافیک ساختار این منطقه به یک پیامتر زنده است که اولین بار در سال 2004 به روش مکانیک از گرافیک جدا شده است. [1] ویژگی‌های منحصر به فرد آن مانند استراتژی‌های الکتریکی، رساندنگی الکتریکی، قطعیت بالا و استحکام مکانیکی باعث شده که توجه زیادی را به خود جلب کند. ویژگی‌های مهم باعث شده که گرافیک در تئوری و معادلات میدان‌های الکتریکی و مغناطیسی برای اطراف تک‌بوده یا گرافیک ساختاری به رابطه پاشندگی زیر می‌باشد:

$$\beta = k \sqrt{\frac{\varepsilon + \frac{2\varepsilon_0}{\kappa \sigma}}{\varepsilon}}$$

در حالت غیرخطی جریان القایی بصورت زیر در نظر می‌گیریم:

$$\mathcal{T} = \sigma \mathcal{E} = (\sigma + \sigma) (\mathcal{E})$$

سی‌ویژگی‌های سی‌ویژگی و σ_{NL} به ترتیب به صورت زیر هستند:

$$i \frac{\sigma}{\pi} = \left[\frac{4\mu}{\hbar \omega + i \Gamma} - \xi \left(\hbar \omega + i \Gamma \right) \right]$$

$$\sigma = \frac{6\mu}{\varepsilon \varepsilon c} (a, o, \theta - o)$$

که اثر غیرخطی کرک است و نتایج در $\xi (\theta)$ بصورت زیر تعریف می‌شود:

$$\xi (\theta) = \ln \left[\frac{2\mu + \theta}{2\mu - \theta} \right] + i \left(\pi + \arctan \frac{\theta - 2\mu - \theta}{2\mu - \theta} - \arctan \frac{\theta + 2\mu - \theta}{\theta} \right)$$

از معادلات 1 و 2 شروع می‌کنیم و با انجام عملیات ریاضی به معادله زیر رسیم:

$$\nabla \times \mathcal{H} + \omega_{\text{osc}} \mathcal{H} - \frac{i}{\omega c} \delta \left(\mathbb{I} \mp \frac{d}{2} \mathbf{n} \frac{\partial \mathcal{H}}{\partial x} \right)$$

شکل 1: یک مندود مواد غیرخطی گرافیکی که از دو سطح گرافیک تشکیل شده است. لایه ی اصلی (1) و غیر خطی لایه (2)
گرایش را در موج‌ریزی، یک رقم از مقدار می‌گیرد. در اینجا، \(Q \) ضریب جذب غیرخطی است.

\[
\frac{d h(x)}{dx} = \frac{\sigma}{\omega} \left(\omega \epsilon \mu - i \frac{\sigma}{\omega} \frac{d H}{dx} \right) h(x) = 0
\]

(10)

\[
2i \beta \frac{d \tilde{C}}{dz} + (\tilde{\beta} - \beta) \tilde{C} = \left(\frac{k}{\omega} \exp(-kd) \right) \tilde{C}
\]

(11)

در اینجا \(Q = \frac{\omega^{(1)} L^3}{2 \omega \epsilon \mu} \exp(-kd) \) است. \(\tilde{\beta}(\omega) \) بنابراین عدد موج در موج‌ریزی غیرخطی می‌باشد.

با استفاده از تقیی \(\tilde{\beta}^2 - \beta_0^2 \approx 2 \beta_0 (\tilde{\beta} - \beta_0) \) در معادله 10، انتقال فرآیند هنگامی به محض دیگری می‌شود. این معادله را به محض دیگری می‌برم و به صورت زیر تبدیل می‌شود:

\[
\frac{ie}{2} + i \beta \frac{C}{Ct} - \frac{\beta}{2} \frac{\partial C}{\partial t} - i \frac{\beta}{6} \frac{\partial C}{\partial t} + i \frac{\partial C}{\partial t} + g(\omega) C | C - QC = 0
\]

(13)

یک مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد.
جایگزینی گرافن

به عنوان نمونه، در مهندسی الکترونیک و رویکرد الکترونیکی در چاره‌های برقی می‌توان به اینکه بر انتشار موج در یک مزود مواد ارگانیک بالا و اینکه بر انتشار موج با توجه به اوردیام و با شبیه سازی معادلات انتشار موج به توان کم در حد 7-6 میکرو و طول 1.2 میکرومتر رای کلیدزنی در مزود مواد ارگانیک برای بررسی ماهیان مجتمع تمام نوی دست پایشکن. در مقایسه با کلیدزنی فیبر ارتباط با کلیف کومکی می‌شود و انرژی مورد نیاز کاهش می‌یابد.

مراجع

این مقاله در صورتی دارای اعتبار است که در سایت www.opsi.ir قابل دسترسی باشد