کلیدزنی تمام‌نوری موج بیوسته در مزدوج موازی گرافنی بر اساس اثر غیرخطی کر
طبیعه بیدباغ، محسن حاتمی
دانشگاه فیزیک، دانشگاه صنعتی شیراز، شیراز

چکیده - در این مقاله ابتدا معادلات حاکم بر انتشار موج را با استفاده از نظریه اختلال مربوطی اول در یک مزدوج موازی غیرخطی گرافنی به دست آورد و با شبیه‌سازی انتشار موج در آن نشان داده‌ایم که می‌توان به یک کلیدزنی تمام‌نوری با توان 7–2 میکرووات بر میل متر برای طول 1.2 میکرون‌متر دست‌یافته و در محاسبات فرض شده که اثرهای غیرخطی و هر یا گرافن از مزدوج موازی به عنوان یک اختلال بر روی دیگر اثر قوی و لی بر روی مقدار اثر لایه اثر ندارد.
کلید وزه - طول انتقال غیرخطی کر کلیدزنی تمام‌نوری گرافن.

All Optical CW Switching in Graphene Directional Coupler Based on Nonlinear Kerr Effect
Tayebeh Bidbarg, Mohsen Hatami
Department of Physics, Shiraz University of Tecnology, Shiraz

Abstract- In this paper first we derive equation of CW wave propagation in graphene nonlinear directional coupler by using first order perturbation theory. By simulation of the wave propagation we have shown that it can be reached to an all optical self-switch within 3-7µWatt/mm at the length of 1.2µm. In this calculation it is supposed that the nonlinear effects and each graphene layer has affected as perturbation on the other layer but have no effect on each layer.

Keywords: Transfer length, Nonlinear Kerr effect, All Optical Switching, Graphene.
1- مقدمه

گرافن یک ساختار لانه زنبوری با یهنتای یک انست که اولین بار در سال 2004 به روش مکانیکی از گرافیت جدا شده است[۱]. ویژگی‌های منحصر به فرد آن، مانند رساندگی الکتریکی، رساندگی گرما، کیفیت بالا و استحکام مکانیکی بالا باعث شده که توجه زیادی به خود جلب کند. ویژگی‌های مکانیکی این گرافن در ترازیستورها، نیمه‌هادها و کاربردهای داشته باشد[۲،۳]. در اینجا مطالعه حاکم بر انتشار موج را برای دیواره گرافن می‌پردازه و در نهایت به‌شیبی سازی انتشار موج پرداخته و کلید زنی نمای نوری را بررسی کرده که کلیدزنی نوری عمل اساسی در شبکه‌های مخابراتی و سیستم‌پردازش سیگنال است. و توان کلید زنی و طول لازم برای آن را بندست می‌آوریم.

2- محاسبات ریاضی

دولایه گرافن را مطالعه شکل (۱) در نظر می‌گیریم که اطراف آنها ماده‌ای الکتریک همگن با ضریب گذشته ε قرار گرفته است. با در نظر گرفتن مدل الکتریکی و میانی زمانی هموزنیک (+10ε) مطالعه exp(–10ε) می‌باشد. ماکسول به شکل زیر نوشته می‌شود:

\[\nabla \times \vec{E} = \frac{\partial \vec{B}}{\partial t} = io\mu \vec{H} \]

\[\nabla \times \vec{H} = -i\omega \vec{E} + \delta \left(x + \frac{d}{2} \right) \vec{J} + \delta \left(x - \frac{d}{2} \right) \vec{J} \]

\[\vec{J} \] شکل ۱ یک مزدوج موازی غیرخطی گرافنی که از دو لایه گرافن تشکیل شده است. لایه‌هایی با پانی (1) و لایه‌هایی با لایه‌ای لایه‌ای (2) یا

این مقاله در صورتی دارای اعتبار است که در سایت قابل دسترسی باشد www.opsi.ir
به‌عنوان یک مثال، بررسی معادلات کویل شده در حالت موج پیوسته و غیرخطی (\(\omega\))، است. در نتیجه از مشتقات زمانی در معادله (1) صرف‌نظر می‌کنیم و با

\[L = \frac{\beta}{2P\gamma k_{\text{seo}}} \] \(\text{۲۲} \) و \(Q = \frac{\pi}{2L} \) گیری می‌شود.

\[\nabla U = \frac{1}{2} aLU + i \frac{L}{L} U \left(U \right) \left(\frac{\pi}{U} \right) \] (14)

که در آن \(\alpha = k\sigma / \omega\beta\) ضریب جذب غیرخطی است.

۳-شیب‌های سازی

با استفاده از معادله (14) انتشار موج را در موج‌های گرافیکی به کمک برنامه‌سازی بررسی می‌کنیم. شکل ۲ (الف) توان اندازه‌گیری در طول مدرجو مواد گرافیکی به ایال توان ورودی ۳ میکروبات کیلول متر در لایه بالا و پایین نشان می‌دهد که از توان کم به طرف شدید خطا خروجی از لایه بالا انجام می‌شود. شکل ۲ (ب) و (ب) توان خروجی بر حسب توان ورودی به ترتیب در توان های ۱-۲ و ۲-۳ میکروبات کیلول متر و فراکسیون ۱۵۶۶۶۴ زیرشمار رسم شده است. که با زیاد شدن توان، نقطه بحرانی و نقطه سوئیچینگ نیز افزایش می‌یابد. در توان‌های بالا خروجی از لایه بالا و با کاهش توان خروجی از لایه بالا.

\[\frac{i \hat{\sigma}}{\omega e} \frac{\delta(x+\frac{d}{2})}{\delta(H + \frac{d}{2})} = \frac{i \sigma}{\omega e} \frac{\delta(x+\frac{d}{2})}{\delta(H + \frac{d}{2})} \] (8)

\[\tilde{H}(r, \omega - \alpha) = h(x) \tilde{C}(z, \omega + \alpha) \exp(i\beta z) \] (9)

\[\left(\omega \epsilon \mu - \tilde{\beta} - i \frac{\sigma}{\omega e} \delta(x+\frac{d}{2}) \right) h(x) = 0 \] (100)

\[2i\beta \frac{\partial \tilde{C}}{\partial z} + (\tilde{\beta} - \beta) \tilde{C} = \left(\frac{k \sigma}{\omega e} \exp(-kd) \right) \tilde{C} \] (11)

\[Q = \frac{\sigma \epsilon (L_{K} + L_{R})}{2\omega e \beta} \] (12)

\[\Delta = \frac{i k}{2\epsilon d} \left[\frac{\sigma + k |\tilde{C}|}{\omega e} \right] \] (12)

\[\frac{\partial C}{\partial t} + i \beta C \frac{\partial C}{\partial t} = \beta C + \frac{i \sigma}{6} \frac{\partial C}{\partial t} + i \frac{\sigma}{2} \alpha C \] (13)

\[+ g(\omega) |C - QC| = 0 \] (13)

تکمیل می‌شود

این مقاله در صورتی در اثر ثبت این است که در سایت www.opsi.ir قابل دسترسی باشد.
به عنوان اهمیت گرافن ابتدا با استفاده از نظریه‌های اختلال مرتبط اول و در نظر گرفتن این غیرخطی کر معادلات حاکم بر انتشار موج در یک مزدوج مواری گرافنی بدست آوردهایم و با شیب ساز ممکن مناسبی انتشار موج با توجه به توان کمی در حد 0.1 میکرو و طول 1 میکرو متر برای کلیدنی در مزدوج مواری گرافنی برای بررسی ماده‌های مجتمع تمام نوری دست یافته‌ایم. در مقایسه با کلیدنی فیبری ابعاد فوق العاده کوچک می‌شود و انرژی مورد نیاز کاهش می‌یابد.

مراجع