Slow Optical Solitons in a Hemispherical Quantum Dot with a Wetting Layer

Masoomeh Dezhkam¹, Abdolnasser Zakery¹ and Alireza Keshavarz²

¹Department of Physics, College of Sciences, Shiraz University
²Department of Physics, Faculty of Science, Shiraz University of Technology

Abstract- In this work, we consider a hemispherical quantum dot with a wetting layer. We obtain the electronic structure of the system by finite element method. To investigate the shape dependency, we calculate the electronic structure for different dot heights, i.e. shape changes from oblate to semispherical dot. We apply two strong control and weak probe laser fields to the system. Because of the quantum interference, the probe pulse absorption decreases and the slow soliton forms in the solid quantum dot system.

Keywords: Electronic structure, Hemispherical quantum dots, Optical properties, Optical solitons.
1- مقدمه

در سال‌های اخیر ساختار الکترونی و خواص اتیپیکی نقطه‌های کوانتومی نیم‌رسانا توسط محققان مورد بررسی قرار گرفته است. ما در این مقاله ساختار الکترونی نقطه شیبی و یا لایه خیس را به روش آنالیز محدود بررسی می‌کنیم. درمورد تحقیقات انجام شده در مراجع بالا، که برای بررسی خواص اتیپیکی از یک لیزر استفاده می‌کنند، ما به میدان لیزری کنترل و کاراکتر به سیستم اعمال سیستم که به‌طور داخلی کوانتومی (که خود باشد پایه‌های چون شفافیت الکترونی) و راک. (می‌شود)، باعث کاهش جذب و سرعت گرده پالس کاوشگر را برای تشکیل شفافیت می‌شود. برای این‌که سیستم نقطه کوانتومی جامد و سیالیت‌دار با سرعت کمتر از نور تشکیل می‌شود.

2- ساختار الکترونی

یک نقطه کوانتومی شیب نیم‌مکروی با لایه خیس در InAs سد را در نظر می‌گیریم. شعاع و ارتقاء نقطه در GaAs سد [4] یک نمونه مشاهده شده است (شکل 1a).

شکل 1a: نقطه شیب نیم‌مکروی با لایه خیس.

برای بررسی خواص اتیپیکی، سیستم نقطه شیبی را از انرژی نمایان داده شده در نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارت-Qaeda

\[\frac{\hbar^2}{2m_e} \left(\frac{1}{m} \nabla u(x) + V(x)u(x) \right) = Eu(x), \tag{1} \]

\[\sigma_{ij} = \left[\left(\begin{array}{cc} u & e \end{array} \right)^T \right] \left[\begin{array}{cc} m & e \\ e & 0 \end{array} \right] \left[\begin{array}{cc} u & e \end{array} \right] \]

برای بررسی خواص اتیپیکی، سیستم نقطه شیبی را از انرژی نمایان داده شده در نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقاء های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقاء، انرژی تراز ناحیه با یک دث در ارتقاء نمونه متفاوت از ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی سه تراز اول را برای گیرنده از دیدگاه ارتقات های مختلف در 10 nm ارزی S
3- سایتون های ایزونی

در محیط خواص ایزونی سیستم که در میدان نیز برهمکنش می کند و اثر بسیار غیرطبیعی دارد. میدان‌های در جهت x پارازیت شده و در جهت y انتشار می یابند. میدان الکتریکی عملکرد شده به سیستم عبارت است از:

\[E = \hat{E}_p \exp(-i\omega t + i\mathbf{k}_p \cdot \mathbf{r}) + \hat{E}_c \exp(-i\omega t + i\mathbf{k}_c \cdot \mathbf{r}) + c.c. \]

(3)

دامنه کنندنی‌گی و بردار موج میدان‌های هستند.

\[\mathbf{k}_{p,c} \quad \text{و} \quad \mathbf{E}_{p,c} \quad \text{میدان کاوشگر بالایی ضعیف با فرکانس} \quad \omega_p \quad \text{به} \quad \mathbf{g} \quad \text{و} \quad \text{میدان کنترل بیوپتیس قوی با} \]

\[\mathbf{f} \quad \text{به} \quad \mathbf{g} \quad \text{و} \quad \omega_c \quad \text{برهمکنش با استفاده از تقریب موج چرخان و تقریب دوقطفی الکتریکی هامیلتونی سیستم بصری نوسانه خواهد بود.} \]

\[\mathbf{H} = -\Delta_p [2\mathbf{f} - (\Delta_p + \Delta_c)] [2\mathbf{f}] - \Omega_p [2\mathbf{f} + \Omega_p] [2\mathbf{f}] + h.c. \]

(4)

\[\Delta_c = \Delta_p - \Delta_2 \quad \text{و} \quad \Delta_p = \omega_p - \omega_{21} \quad \text{کاوشگر و کنترل} \quad \text{و} \quad \omega_{21} \quad \text{فرکانس گذار و} \]

\[\mathbf{E}_p \quad \text{و} \quad \omega_p \quad \text{فرکانس رایی} \quad \mathbf{E}_c \quad \text{و} \quad \omega_c \quad \text{وننوکی میدان} \]

\[\mathbf{H} = \frac{\mu_2 \mathbf{E}_c}{h} \quad \text{و} \quad \mathbf{H}_p = \frac{\mu_2 \mathbf{E}_p}{h} \quad \text{گاهاری} \quad (1 \leftrightarrow 2) \quad \text{و} \quad (3 \leftrightarrow 2) \quad \text{به هستند. با استفاده از معادله شرودینگر وابسته به زمان معادلات حربت برای دامنه احتمال تابع موج الکتریکی به صورت زیر بدست می‌آید:} \]

\[\frac{\partial A_i}{\partial t} = i \Omega_p A_i, \quad \text{آید} \]

(5)

\[\frac{\partial A_{11}}{\partial t} = \Omega_p \hat{A}_{21}, \quad \text{آید} \]

(6)

\[\frac{\partial A_{21}}{\partial t} = i \Omega_p \hat{A}_{11} + i (\Delta_p + \Delta_c) A_2 - \gamma_2 A_3, \quad \text{آید} \]

(7)

\[\frac{\partial A_{12}}{\partial t} = i \Omega_p \hat{A}_{21} + i (\Delta_p + \Delta_c) A_1 - \gamma_1 A_2, \quad \text{آید} \]

(8)

در مورد نظر دامنه و imposes فرکانس زیر نوار (1 \leftrightarrow 2) است.

\[k \quad \text{و} \quad \alpha \quad \text{اهمیت را برای میدان کاوشگر وابسته به زمان} \]

\[\hat{W} \quad \text{برای آید} \quad \text{و} \quad \text{میزان}{ (10)} \quad \text{بدست می‌آید} \quad \text{یرابطه زیر بدست می‌آید:} \]

(10)

\[\text{در این معادلات} \quad K_2 \quad \text{و} \quad \alpha \quad \text{اهمیت را برای} \quad W \quad \text{زیر بدست می‌آید:} \]

(11)
\[\alpha = 0.02 \text{mm}^{-1} \]

برای این مجموعه به دست آورده شده \(K_{2r}W_r \approx 0 \) و همچنین \(V_r \approx 10 \) تا سطح سالیتون ناشی از پیوستن اولیه شیمیایی را بطور \(\Omega_p = \Omega_{p0} \tanh(\eta/r) \exp\left(-iW_r r_0^2 \Omega_{p0}^2 \right) \) عریق حالت کریم. شکل (b) تشکیل سالیتون ناشی از

ناتوانی می‌دهد.

همانطور که می‌بینیم با انتخاب پارامترهای مناسب، تشکیل سالیتون در یک سیستم شفاف که کوانتومی جامد را نشان داده، باید قابل بهبود نشده، جذب میدان کوکستر قابل صرف‌نظر است. با ساختار سرعت گردو و ضریب تغییر خطا از آن‌ها، در جمله می‌تواند و سالیتون در حین انتشار، اثر شرایط

را برای انتخاب یک یال بالس

\[[K_{2r}W_r] << [\Omega_p]^2 \]

کوکستر به کار بردن. بعلاوه سرعت گردو کوکستر کمتر از سرعت نور است. این انتزاع بیخاطر تداخل کوانتومی ناشی از میدان کنترل وجود آن است. این نتیجه یا خاصاً به سیستم

وطنه کوانتومی جامد در دوپاپین صادق است.

\textbf{4- نتیجه‌گیری}

ساختار الکترونی نقطه شبه نیمکروی با لایه خیس را به روش لیک محدود بسته شده است. این‌ها به شکل نقطه با استقامت دار. با اعمال لیزر قوی کنترل، تداخل کوانتومی

برای سرعت الکترونی که باعث کاهش جذب و سرعت گردو بالس

کوکستر ضعیف در نقطه شفافیت می‌شود و در نتیجه

سالیتون حالت کریم و تاریک با سرعت کمتر از نور در

سیستم جامد ما تشکیل می‌شود.

\textbf{مراجع}