Slow Optical Solitons in a Hemispherical Quantum Dot with a Wetting Layer

Masoomeh Dezhkam1, Abdolnasser Zakery1 and Alireza Keshavarz2

1Department of Physics, College of Sciences, Shiraz University
2Department of Physics, Faculty of Science, Shiraz University of Technology

Abstract- In this work, we consider a hemispherical quantum dot with a wetting layer. We obtain the electronic structure of the system by finite element method. To investigate the shape dependency, we calculate the electronic structure for different dot heights, i.e. shape changes from oblate to semispherical dot. We apply two strong control and weak probe laser fields to the system. Because of the quantum interference, the probe pulse absorption decreases and the slow soliton forms in the solid quantum dot system.

Keywords: Electronic structure, Hemispherical quantum dots, Optical properties, Optical solitons.
1- مقدمه
در سالهای اخیر ساختار الکترنی و خواص اینتیکی نقطه‌های کوانتومی نمای انتخاب محیط‌های مولد بررسی گرفته است [1-6]. ما در این مقاله ساختار الکترنی نقطه حیت کوانتومی با یک خیس را به روش الگوریتم حدسیدی، بررسی و یافتن آن به شکلی و انداده نقطه را بررسی می‌کنیم. درآموزنی این مقاله در مورد ساختار نقطه کوانتومی کاملاً مالیتونیها با سرعت کمتر از نور تشکیل می‌شود.

2- ساختار الکترنی
یک نقطه کوانتومی شبیه نیمکرودی در InAs با یک خیس در GaAs سد برای پذیرش داخل کوانتومی (که خود باعث پدیده هایی چون شفافیت القایی الکترومغناطیسی و رامان) می‌شود. باعث کاهش جذب و سرعت گروه پالت کاوشگر در پنجره شفافیت می‌شود. نتایج این مطالعه در سیستم نقطه کوانتومی جامد مالیتونیها با سرعت کمتر از نور تشکیل می‌شود.

شکل ۱. (ای) نقطه شبیه نیمکرودی با یک خیس (ب) ناحیه شبیه سازی و مرزهای عدی.

برای پذیرش آرود ساختار الکترنی سیستم معادله شرودینگر را برای یک الکترن در نقطه و یک خیس در تقریب جرم موتر چل می‌کنیم.

\[
\frac{-\hbar^2}{2m} \left(\frac{1}{m} \nabla^2 u(r) \right) + V(r) u(r) = E u(r),
\]

(*) نتایج پلک بر \(2\pi \hbar) (E, V(r), m^* (r), \hbar)

الکترن و پاناسیس حضورکننده وابسته به مکان، انرژی و ویژه نام سیستم هستند. برای این ساختار، جرم موتر الکترن و پاناسیس حضورکننده عبارتند از:

\[
m^*_{GaAs}(r, z) = 0.067m_0, \quad m^*_{InAs}(r, z) = 0.023m_0.
\]
3- سالیتون‌های ایونیکی

می‌خواهیم خواص ایونیکی سیستم که دو میدان لیزری برهمکنش می‌کند را بررسی کنیم. میدان‌ها در جهت پلاریزه شده اند و در جهت ۱ انتشار می‌یابند. میدان الکتریکی اعمال شده به سیستم عبارت است از:

\[E = \hat{E}_p \exp(-i\omega_p t + ik_{p,c} r) + \hat{E}_c \exp(-i\omega_c t + ik_{c,r} r) + c.c. \]

دامنه کندن‌گیری و بردار موج میدان‌ها هستند. \(k_{p,c} \) و \(E_{p,c} \) میدان کاوشگر بالای ضعیف با فرکانس \(\omega_p \) که گزار [2] \(\rightarrow [1] \) و میدان کنترل پیوسته قوی با فرکانس \(\omega_c \) به گزار [3] \(\rightarrow [2] \) اعمال می‌شود. در تصویر برهمکنش با استفاده از تقریب موج چرخان و تقریب دوقطه‌ای الکتریکی، هامیلتونی سیستم بصورت زیر نوشته می‌شود:

\[\begin{aligned} H &= -\Delta_p [2][2] - (\Delta_p + \Delta_c)[3][3] - (\Omega_p)[2][2] - (H.c.); \\ &+ \frac{\gamma_c}{2} E_c + \frac{\gamma_p}{2} E_p. \end{aligned} \]

داهنم‌ها ناکامی میدان‌های کاوشگر و کنترل و \(\omega_{21} \) فرکانس گذار و \(\omega_{32} \) فرکانس کیس‌رای از معادله شرودینگر با استفاده از معادله حرکت برای دامنه احتمال تابع موج الکترونی به صورت زیر بدست می‌آید:

\[\begin{aligned} &\frac{\partial A_i}{\partial t} = \frac{\partial}{\partial \xi} \left(i \Omega_p^n A_i \right), \\ &\frac{\partial A_i}{\partial t} = i \Omega_p A_i + i (\Delta_p + \Delta_c) A_i - \gamma_2 A_2. \end{aligned} \]
برای این مجموعه به دست آورده: \(K_2 \) و همچنین \(V_g \geq 10 \) تشکیل سالیتون را در سیستم ایجاد می‌کند. سپس

\[\Omega_p = \Omega_{p0} \tanh(\eta/r) \exp(-iW_r \sqrt{\frac{\Omega_{p0}^2}{\Omega_p}}) \]

را پر در عدای حیرت کرده شکل (b) تشکیل سالیتون را در نشان می‌دهد.

همانطور که می‌دانیم، انجام انتخاب گفتگوی بین دو نشان داده می‌تواند باعث انتشار گفتگوی شده جذب میان کاوشگر کاری صرفه‌تر است. با تشکیل کارکرد گروه و ضریب غیرخطی کمتر از آن، این انتایسپراکت تداخل کوانتومی بانی از میدان کنترل برای آن است. انتایسپراکت تشکیل سالیتون کوانتومی جامد در دمای پایین صادق است.

نتایج‌گیری

ساختار الکترونی نقطه شبه نیمکرودی با لایه خیس به روش اندازه‌گیری دست آورده. برای این نقطه به شکل نقطه بستگی دارد. با اعمال نیرو قوی کنترل، تداخل کوانتومی به یک به کار آمده کارکرد جذب و سرعت گروه بالس کاوشگر ضعیف به دنبال نفوذی می‌شود و در نتیجه سالیتون خیس روش و تاریک با سرعت کمتر از در سیستم جامد ما تشکیل می‌شود.

مراجع