تأثیر آهنگ اتلاف مدهای کاواک در شارهای نوفه لیزرهای کلاس-A

در این مقاله به شرط در دسترس بودن در وبگاه www.opsi.ir معتبر است.

چکیده - شارهای نوفه ایجاد شده در یک لیزر کلاس-A توسط نیروی لانژوین کاواک در حالت سه مد طولی با آهنگهای مربوط به شارهای نونه تاثیرگذاری می‌کنند. معادلات حرکت ماکسول- بلوک وابسته به نوسان همزمان مد مرکزی و و دو مد مجاور چپ و راست آن را در حضور نیروی لانژوین حل می‌کنیم. نتایج نشان می‌دهند که نیروهای لانژوین هر مدل تاثیر قابل توجهی در تولید شار نوفه دو مد نوسانی دیگر دارد و با افزایش نرخ میرایی آینه‌های کاواک، شار نوفه مرز و غسل خودبخود افزایش می‌یابد.

کلمات کلیدی - آهنگ اتلاف مدهای کاواک، قضیه افت‌و‌افزایش- اتلاف، معادلات ماکسول- بلوک، نیروی لانژوین کاواک

The damping rate effect of cavity modes on the noise fluxes of class-A lasers

Sharifreh Musavi, Elnaz Khalilzadeh, Jafar Jahanpanah

Department of Physics, Kharazmi University

Abstract- The noise fluxes of the cavity Langevin force in the case of three longitudinal modes with the different damping rates are investigated for a class-A laser. The Maxwell-Bloch equations of motion are thus solved in the presence of three cavity Langevin forces associated with the simultaneous oscillations of cavity central mode and its left and right adjacent modes. The notion of correlation function is implemented to calculate the noise fluxes of stimulated and spontaneous emission radiations to gather with that of laser pumping. The results indicate that the cavity Langevin force of each of three oscillating modes makes a direct contribution in producing the noise fluxes of other two oscillating modes. It is finally demonstrated that by increasing the damping rate of cavity mirrors, the noise fluxes of laser radiation and spontaneous emission are increased.

Keywords: Cavity Langevin force, Dissipation-fluctuation theorem, Maxwell-Bloch equations
1- مقدمه
نوع‌های سفید و رنگی نقش پیتر مهمی در سیاست‌های جدید برای بررسی آن‌ها می‌توان بهبود مصرفی، تولید و روز‌گزاری سیگنال‌های اپتیکی و قراردادهای مربوط به فلش‌گذاری مدادش با کمک کرده‌اند [۱، ۲] در این مقاله، تنها ناقص‌های که توسط اپتیک‌های نوری تولید می‌شوند مطالعه قرار می‌گیرد. بنابراین، ترکیب توسط نورهای نوری که تولید می‌شود، هدف این مقاله بررسی اثر نورهای نوری که تولید می‌شود، در حالی حساسیت همزمان می‌تواند از طول موجه‌ای با توجه به
میزان مواجه به ماده‌های منفی‌کننده.

2- مادئات حرکت برای یک نوری کلاس A با میزان الکتریکی متغیر
برای یک نوری کلاس A با میزان الکتریکی متغیر

\[\alpha(t) = \sum_j \alpha_j(t) \equalN \sum_j \left[\alpha_j + \delta \alpha_j(t) \right] \times \exp \left(-\left[\omega_j t + \tilde{\phi}_j \right] \right) \]

\[D(t) = D_0(t) + \delta D_0 + \left(D_1(t) + \delta D_1 \right) e^{-\left(\Delta + \phi_0 + \delta \phi_0 \right)} \]

\[\gamma_i = C_{i} \left(\frac{C_{i} + i \omega \gamma_c}{\gamma_c \left(1 + \frac{1}{\gamma_c} \right)} \right) \]

\[C_{it} = C_{i} \left(\frac{C_{i} + i \omega \gamma_c}{\gamma_c \left(1 + \frac{1}{\gamma_c} \right)} \right) \]

\[M = \left(C_{i} + i \omega \gamma_c \right) \left(C_{i} + i \omega \gamma_c \right) - 2C_{i} + 2C_{i} \]

\[C_{it} = \left(\frac{D_{i} + D_{i}^{*}}{2D_{0}} \right) + b_i + \left(\frac{\sqrt{2}}{2} \right) \left(1 - x \right) \left(\frac{1}{2} \right) b_i \]

\[\gamma \parallel D(t) = \gamma \parallel D_0 - \frac{2\gamma_e^2}{\gamma_c} \left[\alpha(t) \right]^{2} D(t) \]

\[C_{it} = C_{i} \left(\frac{C_{i} + i \omega \gamma_c}{\gamma_c \left(1 + \frac{1}{\gamma_c} \right)} \right) \]

\[\alpha_j \propto \left(\gamma_i + \delta \alpha_j(t) \right) \]

\[\gamma_i = C_{i} \left(\frac{C_{i} + i \omega \gamma_c}{\gamma_c \left(1 + \frac{1}{\gamma_c} \right)} \right) \]

\[\gamma_i = C_{i} \left(\frac{C_{i} + i \omega \gamma_c}{\gamma_c \left(1 + \frac{1}{\gamma_c} \right)} \right) \]

\[M = \left(C_{i} + i \omega \gamma_c \right) \left(C_{i} + i \omega \gamma_c \right) - 2C_{i} + 2C_{i} \]

\[C_{it} = \left(\frac{D_{i} + D_{i}^{*}}{2D_{0}} \right) + b_i + \left(\frac{\sqrt{2}}{2} \right) \left(1 - x \right) \left(\frac{1}{2} \right) b_i \]

\[\gamma \parallel D(t) = \gamma \parallel D_0 - \frac{2\gamma_e^2}{\gamma_c} \left[\alpha(t) \right]^{2} D(t) \]

\[\gamma \parallel D(t) = \gamma \parallel D_0 - \frac{2\gamma_e^2}{\gamma_c} \left[\alpha(t) \right]^{2} D(t) \]
یک مقاله به شرط در دسترس بودن در وبگاه www.opsi.ir معتبر است.
وابسته است نتیجه قابل قبول می باشد.

![شکل 1: نمودار شار نوهم (چپ) به ازای ε های مختلف](image1.png)

![شکل 2: نمودار شار نوهم مدرست (چپ) به ازای ε های مختلف](image2.png)

![شکل 3: نمودار شار نوهم کل تابش خودب خودی به ازای ε های مختلف](image3.png)

![شکل 4: نمودار شار نوهم پمپاژ به ازای ε های مختلف](image4.png)

همانطور که مشخص است نمودار مربوط به شارهای نوه به استفاده از معادلات ماکسول بلوک انجام شده است. این نمودار توانایی نوهمی به ازای آبگیری هر ازای ε های مختلف برای رسیدن مدل رایه گیری نشان می دهد.

در شکل 3 نمودار شار نوه کل تابش خودب خودی به ازای ε های مختلف رسما شده است. طبق قضیه افت خوشه اتلاف انتظار داریم با افزایش شار نوه خودب خودی افزایش یابد. نتایج شکل با این واقعیت منطبق می باشد.

![شکل 5: نمودار شار نوه کل پمپاژ به ازای ε های مختلف](image5.png)

در شکل 4 نمودار شار نوه پمپاژ به ازای ε های مختلف رسما شده است. طبق قضیه افت خوشه اتلاف انتظار داریم با افزایش شار نوه پمپاژ خودب خودی افزایش یابد. نتایج شکل با این واقعیت منطبق می باشد.