طراحی و ساخت سلول جذبی چند بار بازتابی با آینه‌های استوانه‌ای برای بینایبندی

محمدرضا اسدپنا، سعید قوامی‌صوبوری و علیرضا خورسنده
دانشگاه اصفهان- گروه فیزیک

چکیده - یک سلول جذبی چند بار بنا به یک آینه استوانه‌ای جلویی با یک سوراخ مرکزی و رودادخور پرتو و یک آینه مشنی تشکیل شده است. از سلول جذبی چند بار بنا به یک از چهار از این آینه‌ها به وسیله ای احساس طول بزرگی نشان داده شده که پرتو با محیط در بینامی نمای جذبی استفاده می‌شود. بهره‌های اصلی برای مشخص‌بایی این سلول استفاده از انتشار پرتو گوس دارای آنتی‌گماتهای معیار است. در این مقاله با استفاده از رهایف ماتریسی به صورتی مناسب از یک سلول چند بار بازتابی دست یافته و یک نمونه آزمایشگاهی آن را ساخته و گردیده‌ایم.

کلیدواژه- آینه استوانه‌ای، سلول جذبی چند بار بزتابی

Design and construction of a multipass absorption cell with astigmatic mirrors for spectroscopy

Mohammad Hosein Asadian, Saeed Ghavami Sabouri and Alireza Khorsandi

Department of Physics, Isfahan University

Abstract- A multipass optical cell based upon a front cylindrical mirror with a central input/output hole and a rear cylindrical mirror is used for application to laser absorption spectroscopy. The main approach to characterize this cell is use of propagation of a gaussian beam with a general astigmatism. In this paper, we found an appropriate setup for multipass cell by using matrix approach and then we produced & characterized a laboratory sample.

Keywords: cylindrical mirror, multipass absorption cell, spectroscopy
٢- انتشار پرتو گوستی دارای آسیمپتیسم

ماده‌هایی در برده که برای توصیف موضع پرتو و اثر المان اینترنتی بر پرتو در ریدرس پرتو کاوش استفاده می‌شود برای دستگاه‌های میف می‌شود که نسبت به جریان نوردا باشند. در غیر این صورت این ماده‌ها به صورت تغییر پیدا می‌کنند که در شکل زیر نشان داده شده‌اند. فرض می‌کنیم از روش‌های افواحی طول جدید استفاده از سول‌های چند بارتابی است. اولین سول چند بارتابی توسط وايت در سال ۱۹۴۲ ساخته شد.[۱] این سول از سه اینه کریک تغییر شده است که پرتو لیزر چند بار در بین این سول و پرتو انجام می‌دهد. این ترکیب از ابزاری به دستگاه یک بوده و هم راستا کردن است که در سال ۱۹۹۵ تشکیل شد. این سول از اینه‌های استون‌ها استفاده کرده که پرتو در سطح تغییر نمی‌کند.[۲] در سال ۱۹۹۵ استون‌ها از سال‌های آپریکسیا، سلول‌های زیستی که در تعداد بیشتری رفت و پرتو ایجاد کرده کنن.[۳] نشان دهنده نمایشی شامل استفاده از سول‌های هریوت و مانوس است.

شکل ۲: در تعداد رفت و پرتو در دو نوع سول‌الکس سول گوستی به دو بعد اثر الکی اینترنتی بر روی مشخصات پرتو به صورت گرافیک زیر بین می‌شود.[۴] برای مثال برای یک عدسی نازک که فاصله کانونی در و راست آن متفاوت باشد ماتریس معادلات آن در اینیک ماتریسی به صورت زیر است:[۵]

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{F_x} & 0 & 1 & 0 \\
0 & -\frac{1}{F_y} & 0 & 1
\end{pmatrix}
\]

شکل ۱: تغییر در تعداد رفت و پرتو در دو نوع سول‌الکس سول گوستی به دو بعد میدان یک پرتو گاسی در مختصات دکارتی که در راستای OZ در حرکت است به صورت زیر است:[۶]

\[
E(r, z) = E_0(z) \exp(-0.5ikrQ^{-1}r)
\]

که در آن:

\[
E(r, z) = E_0(z) \exp(-0.5ikrQ^{-1}r)
\]

۱۵۲۲
3- سلول چند عبوری اپتیکی به وسیلهٔ دو آنتن استوانهای هیپسرن چرخه‌ای

در سلول چند عبوری که به وسیلهٔ دو آنتن استوانهای ساخته شده با استفاده از شعاع انجا، این با راه‌های یک رادار در ابزار XZ قرار دهند و شعاع انجا آینه دوم را در سلول اansas رابطه آیی به ماتریس‌های زیر نیاز داریم:

\[M_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[M_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

ماتریس انتقال و چرخش به ترتیب به صورت زیر است.

\[D = \begin{pmatrix} 1 & 0 & d & 0 \\ 0 & 1 & 0 & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[T(\delta) = \begin{pmatrix} \cos(\delta) & \sin(\delta) & 0 & 0 \\ -\sin(\delta) & \cos(\delta) & 0 & 0 \\ 0 & 0 & \cos(\delta) & \sin(\delta) \\ 0 & 0 & -\sin(\delta) & \cos(\delta) \end{pmatrix} \]

رابطه‌های (9) و (10) به ترتیب مربوط به آینه‌های اول و دوم (پیش‌تای) است. رابطه‌های (11) و (12) نیز برای چرخش آینه به صورت زیر استفاده می‌شود:

\[M_{\text{rotated}} = T(\delta) \cdot M_2 \cdot T(\delta) \]

ماتریس معرف مکان پرتو، معرف ترکیباتهای ماتریس مکان پرتو و پارامترهای پرتو گامی در راسته‌های مختلف به (1) صورت زیر است.

\[Q_{-1}^{-1} = \begin{pmatrix} 1 & 0 & -2i \omega & 0 \\ 0 & 1 & 0 & 2i \omega \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

که در آن اندام‌های اچ‌ئی و جهه موج است و که لب زنی در راسته‌های X و Y با راستای خط x=هاستند. این اثر با برای اپتیکی بر مختصات پرتو از دو به سوی رابطه (1) صنعت می‌کند و می‌توان به صورت کلی زیر نمایش داد:

\[\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \]

که در آن به کمک ماتریس دو بعدی است. تغییرات پارامترهای مختلف پرتو در دو بعد (به عبارت دیگر تغییرات مختلط انرژی) بعد از عبور از یک مان اپتیکی از قانون توان‌های ABCD تعبیر می‌کند.

\[Q_{out}^- = \frac{C + DQ_{in}^-}{A + BQ_{in}^-} \]

شکل 33- آلما اپتیکی به نام یا پرتو را آشنا می‌کند.

که در آن هو توان‌های مختلف انرژی قبل و بعد از آلما اپتیکی است. رابطه (3) را می‌توان سطح داد و به دو قسمت حسی و موضعی جدا کرد. به است. که قسمت موهوی برای فرولز بندی توزیع شدت (\(I \propto E^* E^* \)) در بین خواهند رفت.
برای یک رفت و برگشت کامل در درون سلول ماتریس
نهایی به صورت زیر در می‌یابد:

\[C_{\text{roundtrip}} = M_1 \ast D \ast T(-\delta) \ast M_2 \ast T(\delta) \ast D \] \hspace{1cm} (15)

محاسبه این ماتریس‌ها و تغییرات پارامترهای مختلط پرتو
(به عبارت دیگر تغییر نانو مختلط انتخاب و مشخصه
یابی نمایه پرتو یک رفت و برگشت در سلول توسط نرم
افزار «Matlab» انجام شد که نتایج آن برای چند پارامتر
 مختلف رسم شده است. ضیایی سطایی مربوط به سلول
با مختصات ریز است. که این مختصات مطابق با یک
برایه عملی در یک مقاله است. تا درستی نتایج را بررسی
کنیم [8]:

\[d = 0.59m, \delta = 38.5^\circ, f_1 = f_2 = 0.918m \]
\[x_1 = y_1 = 0m, \beta_1 = 0^\circ, \alpha_1 = 1.46^\circ \] \hspace{1cm} (16)

لکه های پرتو لیزر در آینه دوم به صورت زیر است:

3. C. Dyroff, Tunable Diode Laser Absorption Spectroscopy for Trace Gas Measurements with High Sensitivity and Low Drift (Univ.-Verlag, 2008)

\[d = 0.105m, \delta = 11.7^\circ, f_1 = f_2 = 0.1m \]
\[x_1 = 0.0005m, y_1 = 0.001m, \beta_1 = 0.57^\circ \] \hspace{1cm} (17)
\[\alpha_1 = -1.71^\circ \]