Design and construction of a multipass absorption cell with astigmatic mirrors for spectroscopy

Mohammad Hosein Asadian, Saeed Ghavami Sabouri and Alireza Khorsandi

Department of Physics, Isfahan University

Abstract- A multipass optical cell based upon a front cylindrical mirror with a central input/output hole and a rear cylindrical mirror is used for application to laser absorption spectroscopy. The main approach to characterize this cell is use of propagation of a gaussian beam with a general astigmatism. In this paper, we found an appropriate setup for multipass cell by using matrix approach and then we produced & characterized a laboratory sample.

Keywords: cylindrical mirror, multipass absorption cell, spectroscopy
روش‌های گوناگون بین‌بندی نماهای اپتیکی برای رسیدن به حداکثر گلظت قابل آشکارسازی وجود دارد. در پیش‌تر این روش‌ها طول سیستم بزرگ نور و ماده بر توان آشکارسازی تأثیر دارد. از طرفی نیز به منجر به منافع مختلف پزشکی محیط زیست، امید آشکارسازی ایجاد یا طلب می‌کند. یکی از روش‌های افزایش طول جدی استفاده از سلول‌های چند بار‌پا در سال 1942 ساخته شد. این سلول از سه ایزی کروی تشکیل شده است که بر روی لیزر بار در بین آن رفت و برگشت. این چهار مدل از این ترتیب در خود انتخاب‌هایی بزرگ بوده و هم راستا کردن ان مشکل است. در سال 1964 یک نسخه از سلول‌های اس واقعی سال 1995 از آن به استفاده ای استفاده کرد که توامی در یک حجم نتیجه تعیین بخش‌ری فرمت برگشت لیزر ایجاد کنند [2] نشان دهنده نمایی همان چنین الگویی از سلول‌های هرزوت و ماتریس است.

![شکل 2] مشخصات‌های ماتریس پرتو در دو بعد

این الگوی پرتو اپتیکی بر روی مشخصات پرتو به صورت کلی زیر می‌شود [4]:

\[
\begin{bmatrix}
 x_2 \\
 y_2 \\
 \alpha_2 \\
 \beta_2
\end{bmatrix} = \begin{bmatrix}
 A_{xx} & A_{xy} & B_{xx} & B_{xy} \\
 A_{yx} & A_{yy} & B_{yx} & B_{yy} \\
 C_{xx} & C_{xy} & D_{xx} & D_{xy} \\
 C_{yx} & C_{yy} & D_{yx} & D_{yy}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 y_1 \\
 \alpha_1 \\
 \beta_1
\end{bmatrix}
\]

(1)

برای مثال برای یک عدسی نازک که فصل کانونی چپ و راست آن متفاوت باشد ماتریس مناطق آن در اپتیک ماتریسی به صورت زیر است [4]:

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 -\frac{1}{F_z} & 0 & 1 & 0 \\
 0 & -\frac{1}{F_y} & 0 & 1
\end{bmatrix}
\]

(2)

میدان یک پرتو گاوسی در مختصات دکارتی که در راستای
\(OZ\) در حرکت است به صورت زیر است [5]:

\[
E(r, z) = E_0(z) \exp(-0.5ikr^2Q^{-1}r)
\]

(3)

که در آن:

\[
r = \begin{bmatrix}
 x \\
 y
\end{bmatrix}, \quad r^T = \begin{bmatrix}
 x & y
\end{bmatrix}, \quad Q^{-1} = \begin{bmatrix}
 q_{xx} & q_{xy} \\
 q_{yx} & q_{yy}
\end{bmatrix}
\]

(4)

1522
ماتریس معروف مکان پرتو \(T \) معرف ترکیب‌های ماتریس مکان پرتو و پارامترهای پرتو گویی در راستاهای مختلف به

\[
\begin{align*}
1 & = \frac{1}{q_{xx}} - \frac{2i}{R_{xx}} \\
1 & = \frac{1}{q_{yy}} - \frac{2i}{R_{yy}} \\
1 & = \frac{1}{q_{xy}} - \frac{2i}{R_{xy}}
\end{align*}
\]
(5)

که در آن \(R_{ij} \) شعاع انحنای جبهه موج است و \(w_{ij} \) اندازه لبه لوی در راستاهای \(\alpha \) و راستای خط \(\beta \) است. اثر یک مکان یپتیک بر مختصات پرتو گویی در سه بعد از رابطه (1) تبعیت می‌کند و می‌توان به صورت کلی زیر نمایش داد:

\[
\begin{pmatrix}
\frac{x}{w_{xx}} + \frac{2y}{w_{yy}} + \frac{2xy}{w_{xy}} = \text{const.}
\end{pmatrix}
\]
(9)

در سطح چند عبوری که به وسیله دو آن می‌تواند ساخته می‌شود به طور معمول شعاع انحنای آن اول را در صفحه XZ قرار دهد و شعاع انحنای آن دوم را در صفحه YZ قرار دهد. برای مثال، به شیب سازی این سطح بر اساس رابطه (2) به ماتریس‌های زیر نیاز داریم:

\[
M_1 = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]
(10)

\[
M_2 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
(11)

ماتریس انقلال و چرخش به ترتیب به صورت زیر است [44]

\[
D = \begin{pmatrix}
1 & 0 & d & 0 \\
0 & 1 & 0 & d \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
(12)

\[
T(\delta) = \begin{pmatrix}
\cos(\delta) & \sin(\delta) & 0 & 0 \\
-\sin(\delta) & \cos(\delta) & 0 & 0 \\
0 & 0 & \cos(\delta) & \sin(\delta) \\
0 & 0 & -\sin(\delta) & \cos(\delta)
\end{pmatrix}
\]
(13)

که در آن \(\delta \) به ترتیب تانسور های مختلط انحنای قبل و بعد از مکان یپتیک است. رابطه (3) را می‌توان با استفاده داد و به دو قسمت حقیقی و مخاطری جدا کرد باینی است که قسمت واقعی برای فرمول بندی نتوانست شدت (\(I \propto \beta^* E^* \)) نیز برای چرخش آن‌ها به صورت زیر استفاده می‌شود:

\[
M_{\text{rotated}} = T(\delta) * M_2 * T(\delta)
\]
(14)

\[\text{شکل 3: اثر مکان یپتیک بر ناشی پرتو را از لنز می‌دهد.}\]
برای یک رفت و برگشت کامل در درون سلول ماتریس نهایی به صورت زیر در می‌آید:

\[C_{\text{roundtrip}} = M_1 \cdot D \cdot T(-\delta) \cdot M_2 \cdot D \cdot T(\delta) \cdot D \] (15)

محاسبه این ماتریس‌ها و تغییرات پارامترهای مختلف برتو به‌عنوان دیگر تغییرات مخاطب احتمال و مشخصه یابی نامه برتو برای هر رفت و برگشت در سیل توسط نرم‌افزار «Matlab» انجام شد که نتایج آن برای چند پارامتر مختلف رسم شده است. ولی شیب‌های مربوط به سلولی با مشخصات یک است که این مشخصات مطابق با یک برابری عملی از یک مقاله است در دستی نتایج را بررسی کنید:

\[d = 0.59m, \delta = 38.5^\circ, f_1 = f_2 = 0.918m \]
\[x_1 = y_1 = 0m, \beta_1 = 0^\circ, \alpha_1 = 1.46^\circ \] (16)

لکه‌های برتو لیزر در آینه دوم به صورت زیر است:

\[\text{شکل ۴، لکه‌های برتو لیزر در آینه دوم با منادی راه‌های (16)} \]

تعداد رفت و برگشت با این مشخصات ۲۵ بار است که به توجه به فاصله‌های آی‌هاین، فاصله موتور برای ۲۹.۵ متر می‌شود. سلولی که در آزمایشگاه ساخته شده، باری چهار رفت و برگشت تنظیم شده است که نتیجه‌های شیب‌های لیزری و برابری عملی آن با هم مقایسه شده است. این سلول‌های گرمشته ریز است:

\[d = 0.105m, \delta = 11.7^\circ, f_1 = f_2 = 0.1m \]
\[x_1 = 0.0005m, y_1 = 0.001m, \beta_1 = 0.57^\circ \] (17)
\[\alpha_1 = -1.71^\circ \]