Design and construction of a multipass absorption cell with astigmatic mirrors for spectroscopy

Mohammad Hosein Asadian, Saeed Ghavami Sabouri and Alireza Khorsandi

Department of Physics, Isfahan University

Abstract- A multipass optical cell based on a front cylindrical mirror with a central input/output hole and a rear cylindrical mirror is used for application to laser absorption spectroscopy. The main approach to characterize this cell is use of propagation of a gaussian beam with a general astigmatism. In this paper, we found an appropriate setup for multipass cell by using matrix approach and then we produced & characterized a laboratory sample.

Keywords: cylindrical mirror, multipass absorption cell, spectroscopy
روش‌های گوناگون بین‌بندی‌های این‌تیکی برای رسیدن به حداقل علائم قبل آشکارسازی وجود دارد. در برخی این روش‌ها طول مسير برمگ کنن و حال بر توان آشکارسازی تأثیر دارد. از طرفی نیازهای مختلف پزشکی، محدودیت زیست، امثبت آشکارسازی نیازمند را طلب می‌کند. یکی از روش‌های افزایش طول جذب استفاده از سولول‌های جدید آزمایشی است. اولین سولول چند بار مایعات وایت در سال 1942 ساخته شد. این سولول از سه ایسه کروی تکمیل شده است که بعد از یک از این تکمیل درازات از بزرگ‌تر به درو رفت و برگشت انجام می‌دهد. این ایجاد این تکمیل درازات بر اثر پیشرفت و هم راستا کردن پیشرفت و تنظیم است. در سال 1964 هرچه پیشرفت باشد، سیستم‌های دوی این روش ساخته شد. در سال 1985 اینهایی از آنها از سیستم‌های تعاملاتی استفاده کرده‌اند تا رفت و برگشت ایجاد را در سالهای زمانی از سیستم‌های مانوس است. برای این سیستم‌ها در تعداد رفته و برگشته، در دو نوع سولول الف) سولول هریوت و مانوس است. برای این سیستم‌ها در تعداد رفته و برگشت‌ها در دو نوع سولول الف) سولول هریوت و مانوس است.
بسیاری کناره‌گیری‌ها و فتوتوکی‌ها ایران به همراه شش‌شماره کناره‌گیری، مهندسی و فناوری فتوتوکی ایران

$$0.5ikTQ^{-1} = 0.5ik\left(\frac{x^2}{q_{xx}} + \frac{y^2}{q_{yy}} + 2\frac{xy}{q_{xy}}\right)$$

(8)

در نتیجه سطح مقطع نمایی پرتو به صورت زیر خواهد بود:

$$\frac{x^2}{w_{xx}} + \frac{y^2}{w_{yy}} + 2\frac{xy}{w_{xy}} = \text{cons.}$$

(9)

3- سلول چند عبوری اپتیکی به وسیله دو آنیه استوانه‌ای همسان چرخه‌ای

در سلول چند عبوری که به وسیله دو آنیه استوانه‌ای ساخته می‌شود به طور معنی‌دار شاخه‌انحای آنیه اول را در صفه‌ی Qx ساخته و شاخه‌انحای آنیه دوم را در صفه‌ی Qy ساخته. برای تعیین این شاخه‌انحای در آنیه استوانه‌ای همسان چرخه‌ای

$$\begin{bmatrix} x_2 \\ y_2 \\ \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \\ D \\ \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ \end{bmatrix}$$

(6)

که در آن A,B,C,D هر کدام یک ماتریس دو بعدی است. تغییرات پرامترهای مختلف پرتو در دو بعد (به عبارت دیگر تغییرات تنسورهای مختلف انگشت) بعد از عبور از یک اپتیکی از قانون تنسوری Q ابزاری

$$Q_{out} = \frac{C + DQ_{in}}{A + BQ_{in}}$$

(7)

4- ماتریس انتقال و چرخش به ترتیب به صورت زیر است

$$M_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \end{bmatrix}$$

(11)

ماتریس معرف مکان پرتو T معرف ترکیب‌های ماتریس

$$Q^{-1}$$

تانسور مخلوط انحنای و پرامترهای پرتو گاوسی در راستاهای مختلف به

$$\begin{bmatrix} q_{xx}^{-1} \\ q_{yy}^{-1} \\ q_{xy}^{-1} \\ q_{yx}^{-1} \end{bmatrix}$$

بین خواهد رفت.

$$M_{rotated} = T(-\delta) * M_2 * T(\delta)$$

(14)

که در آن T(\delta) به ترتیب تنسورهای مختلف انحنای قبل و بعد از الگر است. رابطه (7) را می‌توان سطح داد و به دو قسمت تخصصی و معمول چنین گردید. است

که قسمت معمولی پزشک فرمول بندی توزیع شد. (I \propto E^* E^*)
برای یک رفت و گرگشت کامل در درون سلول ماتریس
نهایی به صورت زیر در می‌آید:

\[C_{\text{roundtrip}} = M_1 \cdot D \cdot T(-\delta) \cdot M_2 \cdot T(\delta) \cdot D \] (15)

محاسبه این ماتریس‌ها و تغییرات پارامترهای مختلط پیوتو
به عبرت دیگر تغییرات مختلف انحنای و مشخصه
پایی نمایه پیروی برای یک رفت و گرگشت در سلول توسط نرم
افزار «Matlab» انجام شد که نتایج آن برای چند پارامتر
مختلین است. اولین شبیه‌سازی مربوط به سلولی
با مشخصات یک اصل درست، که این مشخصات مطابق با یک
برای عملی یک مقاله است که درستی نتایج را برسی
کنیم [9] :

\[d = 0.59m, \ \delta = 38.5^\circ, \ f_1 = f_2 = 0.918m \]
\[x_1 = y_1 = 0m, \ \beta_1 = 0, \ \alpha_1 = 1.46^\circ \] (16)

لکه‌های پیروی لیزر در آینه دوم به صورت زیر است:

\[d = 0.105m, \ \delta = 11.7^\circ, \ f_1 = f_2 = 0.1m \]
\[x_1 = 0.0005m, \ y_1 = 0.001m, \ \beta_1 = 0.57^\circ \] (17)
\[\alpha_1 = -1.71^\circ \]

شکل 2: لکه‌های پیروی لیزر در آینه دوم با میادین رابطه‌ی (16)