Using optical pulse pump to Control band gap of photonic crystals containing InGaAs/GaAs semiconductor quantum wells

Mahshid Mokhtarnajad¹, Habib Tajali¹, and Samad Roshan entezar¹

¹ Department of physics, University of Tabriz, Tabriz

Abstract- In this paper, the effect of incident angle on reflectivity and the active band gap of a one-dimensional resonant photonic crystal containing InGaAs/GaAs semiconductor quantum wells is discussed. The photonic crystal is excited by a strong external femtosecond pump pulse with a frequency close to the exciton resonance frequency. The results show that owing to the optical Stark effect and control of the exciton resonance frequency, the crystal band gap can be controlled. This band gap that is controlled by the Stark effect, can be useful to design optical switches and filters. Due to the small size of the introduced structure, it has the capacity to utilize in the optical integrated circuits and optical telecommunication systems.

Keywords: Photonic crystal, Stark effect, Band gap, Optical switch
روش ماتریس انتقال، یک روش ساده برای محاسبه و بررسی گاه باند بلورهای فوتونیک یک بعده است. با استفاده از این روش، دامنه امواج ناشی و بارزتر و ورودی توسط ماتریس انتقال کل، که مشکل از حاصل ضرب ماتریس انتقال تک کن و مانند به دامنه میدان عبوری بصورت زیر مرتبط می‌شوند:
$$
\begin{bmatrix}
E_i \\
E_f
\end{bmatrix} =
\begin{bmatrix}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{bmatrix}
\begin{bmatrix}
E_i \\
E_f
\end{bmatrix}
$$
که در آن E_i و E_f دامنه میدان عبوری از ساختار است. با توجه به اینکه در مزر بین دو محیط، میدان الکتریکی و مغناطیسی باز در شرایط مزری مسطح کننده شدند با استفاده از شرایط مرزی می‌توان میدان ورودی و خروجی از یک لایه را ارائه توسط ماتریس انتقال به دنبال نشان داد. در بلور فوتونیک یک بعده مشترک از جام و سد کوانتومی، ماتریس انتقال به شکل زیر خواهد بود:
$$
Z = Z_{11} Z_{12} Z_{21} Z_{22}
$$
که در آن Z_{11} ماتریس انتقال سد محدود به جام کوانتومی است:
$$
Z_{11} = e^{-i\beta/k}
$$
 قطر k برابر است با:
$$
\phi = \omega_{\text{dr}} d \cos \theta_l/c
$$
ماتریس پراکندگی موج الکترومغناطیسی در سطح مشترک بین سد و جام پتانسیل بوده و برابر است با:
$$
Z_{sw} = Z_{sw}^{-1} = \begin{pmatrix}
1 + \rho & \rho \\
\rho & 1 + \rho
\end{pmatrix}
$$
در رابطه فوق ρ ثابت بارزتر فرکانس می‌باشد. ماتریس Z_{sw} انتقال مربوط به جام کوانتومی است که به صورت زیر داده می‌شود:
$$
Z_s = i\beta \begin{pmatrix}
\cos (3\beta) & -1 \\
1 & \cos (3\beta)
\end{pmatrix}
$$
که در آن برابر است با:
$$
\phi = \omega_{\text{dr}} d \cos \theta_l/c
$$
1- مقدمه
بلورهای فوتونیک، ساختارهای با توزیع ضریب شکست منفی تأسیس که اولین بار در سال 1987 توسط رایلی معرفی شدند([1-3])، نیاز می‌باشد به استفاده از بلورهای فوتونیک در ادارات تازه و می‌توان در یک کلمه، عنی "مهدسی فوتون" که انرژی انتشار را در مقياس طول موج داده دارد، خلاصه کرد. برای این اکثریت سرعت انتقال و بردارش اطلاعات، استفاده از این اکسترا هم نمی‌توان باعث ویژگی الکترونی یک امر خاصی از فرمول داده. مهندسین ویژگی بلورهای فوتونیک وجود یک رابط فرکانسی از امواج الکترومغناطیسی است که اکتیویشن از بلور را ندارند. این نوایی جامع و ساده و ضد تغییر مجزا در ساختار بلور فوتونیک در طراحی میکروکاوهای نیزی، فیلتره و کلیدهای تازه مورد استفاده قرار می‌گیرند([5]).
در این مقاله، گونه‌ای از بلور فوتونیک مشکل از نیم رسانایی چاکا کوانتومی در حال واقع تراز اکسیتونی در دو حال جمع بدون اعمال دمای و سپس تحت تنش ناشی از نسبت دو مدل دیگر قرار گرفته است. بین منظور از معادله ماکس و پیوستگی مؤلفه‌های میکروسیمی و روش ماتریس انتقال استفاده شده است. برخلاف گاه یکدنبال فوتونیک، حقیقی معنی‌دار و وقتی عکاسی‌های چاکا کوانتومی با تناوب برکت کشته ناشی از اکسیتونی قرار گیرد، اندازه مورد که موثر و به یک گاه باند فوتونیک ارتباط می‌گیرد این مدل به کمک اکسیتونی زمین شده، از بارزترین راه از تنش تشخیص از اکسیتونی خارج پاسبان به نتیجه بیشتر از چگونگی و فراهماسی یک اثربخش اکسیتونی، گاه باند این اثر را می‌توان تحت کنترل قرار داد([6]).
2- محاسبه گاه باند توسط ماتریس انتقال
طرح شماتیک ساختار بلور فوتونیک یک بعده مورد بررسی در شکل (1) نشان داده شده است.
شکل 1: بلورهای انتقال از لایه لایه سلول شمای 20\% مانند با ضریب شکست متفاوت.
پیشینه کنفرانس ایناری و فوتونیک ایران به همراه شش مسئله کنفرانس مهدی‌سی و فناوری فوتونیک ایران

خواص ایناری سد برای است با

$\phi_n = \gamma \omega \alpha_0 + \frac{c}{2} \cos \frac{\theta}{2} \sqrt{T_e} \left(\frac{T_e}{T_d} \right)$

در اینجا γ, ω, α_0, c, و θ توابعی هستند که به‌عنوان m_d، d_{e}، θ_{e}، و T_e مشخص می‌شوند.

$E_0 = 0.415 - 2.76 \times 10^{-4} T_d^2 + (T_e + 83) (ev)$

برای سد با

$E_1 = 0.15 (0.43 \times 10^{-4}) T_e (ev)$

و

$N = 1.46 T_e^{11.7} \times 10^{9} \exp \left(\frac{E_1}{2 (E_2 + T_e)} \right) (cm^{-3})$

مقدار فاکتور انتقال $\alpha(T)$ برای $0.05 \alpha_0(T)$ تابعی است.

حال برابندها (100) برای روش $R = \sum r^2$ نمونه‌ای اخیر در حسین‌نژاد فراگانی 7895 تا 30000 نانومتر ولت برای 3 زاویه‌بندی نماfat $\theta = 0, \theta = 0.6, \theta = 0.2$ رسم می‌شود (شکل 3). اکستنپ نمودن انلاین در 20 درجه برای $0.05 \alpha_0(T)$ ولت قرار دارد. به‌طور دیگر $\theta = 0$ برای $\theta = 0.6$ نشان می‌دهد که با اعمال قرار.

شکل 3: برای آبیاری بازتاب‌های جهت کناری یک کانسپتیمیک در این مقاله فرض شده است که تابعی مورد بررسی است InAs و سه‌دای InGaAs/GaAs که بهترین دارای بهبود 7 نانومتر باید بازتاب‌های تابع در این مقاله بررسی شده است.

$N = \frac{Z_n Z_n Z_n}{Z_n Z_n Z_n}$

باتوجه به رابطه (8) ضربی بزرگ‌تر سد خواهد بود با

$R = \frac{Z_n Z_n Z_n}{Z_n Z_n Z_n}$

برای زاویه‌بندی و سودی، ضربی بزرگ‌تری قابل محسوب شده است. دراینجا می‌خواهیم تغییر زاویه‌بندی در ضیای بارباین و لذا کنن大气 از تابعی باتوی نبود.

3- نتایج و بررسی

در این مقاله فرض شده است که ساده‌تر مورد بررسی شامل 400 نمونه از جمله این، InAs و سه‌دای InGaAs/GaAs که بهترین دارای بهبود 7 نانومتر باید بازتاب‌های مختل کنن大气 از تابعی باتوی نبود.

$\alpha(T) = \alpha \left(\frac{\alpha(T)}{2} \right)$

که در آن:

$\alpha(T) = 2 \alpha_0(T) = \frac{\sqrt{T_e} \gamma}{\sqrt{m_d}}$

گردنده‌ای الکتریکی در فرکسانشای با بار الکتریکی $\gamma = \frac{\sqrt{T_e}}{\sqrt{m_d}}$ با خود $\gamma(T)$ و $\gamma(T)$ از بدنه‌ای در گردنده‌های می‌باشند.

1527
فکرانی در بارهٔ t و همچنین r Ω با اعمال پالس دمی، یک جایگزین قابل ملاحظه در گال‌باند اینیکی بلو فوتونی مطابق شکل (5) مشاهده می‌شود. پس از اعمال دمی توری گال‌باند باعث کنترل شده و مکان یافتن فکرانی غیرمجز و مجاز تغییر می‌یابد.

نحوه فرم عکس گال‌باند بلو فوتونی مشکلت از نیم رسانه‌های فکونوکومنی با بررسی گال‌باند فکونوکومنی بلو فوتونی مشکلت از نیم رسانه‌های کوانتومنی $InGaAs/InAs$ و اعمال اثر اشتارک ایپتیکی، نشان داد که در این جدایی بلو شامل چاه کوانتومنی و بررسی تغییرات فکرانی و راکتی ناشی، منجر به اکتیوراسیون حتی پایین‌تر و کنترل فکونوکومنی می‌شود. پس از اعمال دمی نوری توسط لیزر فکونوکومنی، مکان نواحی فکنانی غیرمجز و نواحی مجاز تغییر می‌یابد که به طور مثبت و کلیدهای نوری فوق سرعت می‌توان بهره جست.

منابع

تابع (2) ماتریکس نواحی کوانتومنی $InGaAs/InAs$ نواحی رنگ گال‌باند غیرمجز و نواحی سفید باندهای مجاز می‌باشند. همانطور که مشاهده می‌شود به ازای زاویه صفر و درجه 0 (Ω=0) نواحی به فکرانی در بارهٔ t و همچنین r Ω اختیار می‌شود. نوبت دیگر سیستم را تحت پایین دمی قرار دهید و توجه به ارثارتک ایپتیکی، جایگزین فکرانی محصول در نمودار گال‌باند مشاهده می‌شود و بین و رتبیت سیستم قابلیت پیدا می‌کند که دامنه فیلد با کلید نوری عمل کند. شکل (5) وضعیت گال‌باند سیستم تحت پایین دمی می‌باشد که نواحی ثریه رنگ گال‌باند غیرمجز و نواحی رنگ گال‌باندی مجاز می‌باشد. به ازای زاویه ورودی صفر (Ω=0) دو منطقه ممنوعه