پهبود عملکرد فتوکاتالیستی نانولوله های TiO$_2$ آلالیپیده شده بوسیله نانوذرات پلاسمونیک طلا

راحله سعیدی، نادر صیح خزی و احمد منصعی

دانشگاه تربیت مدرس تهران

چکیده - در این تحقیق تأثیر میدان نزدیک نانوذرات پلاسمونیک طلا بر عملکرد فتوکاتالیستی نانولوله های TiO$_2$ اکسید تیناتیوم در محدوده تابشی نور خورشید مورد طالعه قرار گرفته است. نانولوله های TiO$_2$ اکسیدتیناتیوم با استفاده از روش آندرایاسون سنتز شده اند. به منظور بهبود خواص فتوکاتالیستی TiO$_2$ نانوذرات طلا به دو روش متفاوت لایه تیتانیوم (جرخشی و نشیمنی رسوی) بر روی نانولوله ها قرار گرفته است. بررسی رفتار فتوکاتالیزوری نمونه ها به خوبی نشان دهنده افزایش 44% رفتار فتوکاتالیستی نانولوله های TiO$_2$ اکسیدتیناتیوم برای لایه نانوذرات طلا به روش چرخشی و 143% برای لایه نانوذرات طلا به روش ترشی رسوی است. افزایش قابل ملاحظه فعالیت فتوکاتالیستی در روش دوم به دلیل ترکیب نانوذرات طلا به داخل نانولوله های TiO$_2$ می باشد که باعث بازیابی حجم بیشتری از نانولوله ها تحت تأثیر افزایش میدان نزدیک نانوذرات طلا قرار گیرند. اما در حالت لایه نانوذرات طلا فقط 44% کمی از نانولوله ها قرار می گیرند و نه کمی از داخل نانوذرات طلا دارند. بنابراین انتقال پلاسمونیک در این حالت برای حجم کمتری از نانولوله اتفاق می افتد.

کلید واژه - نانوذرات دی اکسیدتیناتیوم، نانوذرات پلاسمونیک، آندرایاسون، فتوکاتالیست

Plasmonic Enhancement of Solar Photocatalytic Performance of TiO$_2$

Nanotubes Doped with Gold Nanoparticles

Rahleleh Saeidi, Nader Sobhkhiz and Ahmad Moshaii

Tarbiat Modares University, Tehran

Abstract- In this study, near field effect of plasmonic nanoparticles on the photocatalytic performance of TiO$_2$ nanotubes in range of sunlight, have been studied. TiO$_2$ nanotubes have been synthesized by using anodization. In order to improve photocatalytic properties of TiO$_2$ nanotubes, the gold nanoparticles have been coating with two different method (spin coating and deposition precipitation) on TiO$_2$ nanotubes. Photo catalyst behavior of samples, represent 44% increasing in photocatalytic activity of TiO$_2$ nanotubes in spin coating method of gold nanoparticles, and 143% increasing in deposition precipitation method. Photocatalytic activity increased significantly in the second method, mainly due to the influence of gold nanoparticles into TiO$_2$ nanotubes that causes a greater volume of nanotubes are influenced by increasing the near filed by gold nanoparticles. But in the case of spin coating, gold nanoparticles are just one layer on the top of the nanotubes and they have little influence. So in this case, plasmonic upgrade occur for less volume of TiO$_2$ nanotubes.

Keywords: TiO$_2$ nanotubes, Plasmonic nanomaterials, Anodization, Photocatalitic
ساختار یک بعدی نانولوله‌های اکسید تیناتیوم به دلیل نسبت بالای سطح به حجم (A/V) ذرات خواص مفید و منحصربه‌فرد می‌باشد. آرایه ای دقیق این نانولوله‌ها یکی از بهترین نمونه‌های تاش مناسب و مولت نفود باعث انتقال الکترون بین مسطح تبدیل کرده است.

1- مقدمه

نمونه‌های اکسید تیناتیوم به دلیل نسبت بالای سطح به حجم (A/V) ذرات خواص مفید و منحصربه‌فرد می‌باشد. آرایه ای دقیق این نانولوله‌ها یکی از بهترین نمونه‌های تاش مناسب و مولت نفود باعث انتقال الکترون بین مسطح تبدیل کرده است.

2- روش تهیه نمونه

نام لوله‌ای در اکسید تیناتیوم با استفاده از روش اندریاسون تهیه شد. در این روش دو الکترود داریم، اولی ورق نازکی از دی اکسیدتیناتیوم (دمد مغناطیسی) که در این تدریج با استفاده از سنتیک‌سنسور گریزی زدای گردیده و به مس ساختمان نانولوله‌های طبیعی می‌باشد. آن‌ها نیز تغییر می‌کنند. استفاده از نانولوله‌ها در ساختار کامپوزیت از نظر نانولوله‌ها به ناحیه پیشنهادی سود و نهایتاً تفاوت قابل توجهی در فاکتور فتوکاتالیستی را باعث می‌شود.

3- روش تهیه نمونه

نام لوله‌ای در اکسید تیناتیوم با استفاده از روش

اندیریاسون تهیه شد. در این روش دو الکترود داریم، اولی ورق نازکی از دی اکسیدتیناتیوم (دمد مغناطیسی) که در این تدریج با استفاده از سنتیک‌سنسور گریزی زدای گردیده و به مس ساختمان نانولوله‌های طبیعی می‌باشد. آن‌ها نیز تغییر می‌کنند. استفاده از نانولوله‌ها در ساختار کامپوزیت از نظر نانولوله‌ها به ناحیе پیشنهادی سود و نهایتاً تفاوت قابل توجهی در فاکتور فتوکاتالیستی را باعث می‌شود.

شکل 1. سلول الکترو شیمیایی رای اکسیداسور.
بعد از مراحل اکسیداسیون و ساخت، نمونه‌ها در دمای 500 °C به دقت 80 دقیقه و با آهنگ گرم کردن نمونه در 9.5°C/мин سپس با منظور بهره‌برداری فعالیت فوتولکتریکی، تناولولهای دی-آکسید تيتانون به دو روش با استفاده از نانوذرات بلامونیک طلا و نانوذرات نشان شدند.

1- روش لایه نشانی چرخشی: در این روش لایه‌ای از طلا با ضخامت 10 نانومتر بر روی نمونه‌ها لایه‌ای نشانی شد.

2- روش نشانی ریسوب: به‌کلی، منظور محلول طلا با غلظت 3×10⁻⁶ M HauCl₄.3H₂O (Alfa Aesar,99.99%) و محلول سوخت با غلظت 8.8×10⁻³ M NaOH (Flakes, Fisher scientific) که به‌کلی در 25 میلی لیتر آب DI تهیه شدند. مخلوط گردیده که در نتیجه ما 5 میلی لیتر محلول از مخلوط فوق را‌هاوی درست. نمونه‌ها ساختار سریع‌تر از این محلول قرار داده شدند و در آون در دمای 140 °C بایا 1 ساعت قرار داده‌اند. بعد از لایه نشانی نمونه‌ها با مقدار زیادی آب DI بایا 20-100 ثانیه شسته و در دو حالت گردید.

3- بحث و نتایج

3-1- آنالیز XRD و بررسی مپولولوژی سطح

به‌منظور بررسی و مطالعه مپولولوژی و چگونگی پات‌بندی سطح لایه‌ای تازه ناشناخت تناولولهای TNA، استفاده گردید. برای چگونگی پات‌بندی SEM برای تازه‌بندی نمونه‌ها با هکتان به‌کار رفته شد. بررسی خواص نوری نمونه‌ها با استفاده از XRD نمونه‌ها به‌کار رفته شد. نمونه‌های تیتانیوم (Ti) با فاصله تیتانیوم 4.3×10⁻³ M HauCl₄.3H₂O (Alfa Aesar,99.99%) و محلول سوخت با غلظت 8.8×10⁻³ M NaOH (Flakes, Fisher scientific) که به‌کلی در 25 میلی لیتر آب DI تهیه شدند. سپس نمونه‌ها با استفاده از نانوذرات بلامونیک طلا و نانوذرات نشانی شدند.

4- بررسی خواص نوری نمونه‌ها با استفاده از تست تجدید متنبی بلو

فعالیت فوتولکتریکی نمونه‌های دی-آکسید تيتانون توسط تست تجدید متنبی بلو بررسی شد. نمونه بلو دارای یک پیک اصلی در طول موج 555 نانومتر است. با چنین نور خورشیدی متنبی بلو تجدید شده و با پیش‌بندی زمان شدت نجب یک کاهش می‌کند. در این مورد نبلامونیک در طول و با غلظت 2 µM را داخل کوت برتخت و سپس نمونه‌های تهیه شده از نانوذرات بلامونیک دی-آکسید تيتانون با بهبود بالا را آن قرار می‌دهیم.
شکل ۵: نمونه‌های TNA و همچنین ساختاری اصلاح شده که در محلول منیتر بلو قرار گرفته‌اند.

از نور خورشید به‌عنوان منبع ضرر استفاده گردید. سپس هر ۱۵ دقیقه یکی از نمونه‌های لایه‌دهی توسط هسته‌های UV-Vis نمونه‌های لایه‌دهی توسط هسته‌های UV-Vis نمونه‌های مختلف با مقدار زمان نصب است. با زمان نصب بیشتر، شکل ۶ نمونه‌های مختلف با مقدار زمان نصب است. با زمان NTA بلو قرار گرفته‌اند.

برای نمونه‌های مختلف شدت قله لایه‌گری و حس زمان مریگ دری که در شکل ۷ مشاهده می‌شود. شبکه هم‌شکل شدند. تحلیل اصلاح شده با توجه به روش تفاضل و محاسبات در ناحیه مربی و ثانی که یک پلاستیسازی برای تغییر در مقدار نیتیک تولید محجر به بهبود فتوکاتالیست‌های گردید.

مراجع