بیشینه کنندر فوتونیک ایران
و ششمین کنفرانس مهدیسی و فناوری فوتونیک ایران
8 تا 10 بهمن ماه 1392 - دانشگاه صنعتی شیراز

بهبود عملکرد فوتوکاتالیستی نانولوله های TiO2 آلالیه شده بوسیله نانوذرات پلاسمونیک طلا

ردهه سعیدی، نادر صبح خیز و احمد مشاعی

دانشگاه تربیت مدرس تهران

چکیده
در این تحقیق تأثیر میدان نزدیک نانوذرات پلاسمنیک طلا بر عملکرد فوتوکاتالیستی نانولوله‌های TiO2 تابعیت در محصول تابعیت تپرسید مورد مطالعه قرار گرفته است. نانولوله‌های TiO2 اکسیدتیتام با استفاده از روش آندیاسیون سنتز شده‌اند. نانوذرات طلا به روش متقاوتوی شیمیایی در مه‌داده شده‌اند. رفتار فوتوکاتالیستی نانولوله‌های TiO2 در صفحه فکاره‌ای انرژی نسبت به درون نانوذرات طلا و سطح نانوذرات طلا ثابت می‌شود. در رفتار فوتوکاتالیستی نانوذرات طلا با روش دوم، نانوذرات طلا به روش تکثیف رسوبی رفتاری به نانوذرات طلا به روش دوم افزایش 244 درصدی داشته و 143 درصدی در روش دوم داشته‌اند. افزایش قابل ملاحظه فعالیت فوتوکاتالیستی در روش دوم پس از فیلم‌کردن طلا افزایش 44 درصدی نانوذرات طلا از تعداد نانوذرات طلا در روش دوم داشته. در حدی که بیشتری از نانوذرات طلا تحت تاثیر افزایش میدان نزدیک نانوذرات طلا قرار گیرند. امکان تغییر نسبت به درون نانوذرات طلا و سطح نانوذرات طلا فقط یک بیشتری از نانوذرات طلا به عنوان دو خانه این افزایش نانوذرات طلا را نشان می‌دهد. نانوذرات طلا و سطح نانوذرات طلا را نشان می‌دهد. نانوذرات طلا را نشان می‌۱۶۹


Rahelkeh Saeidi, Nader Sobhkhiz and Ahmad Moshaii
Tarbiat Modares University, Tehran

Abstract- In this study, near field effect of plasmonic nanoparticles on the photocatalytic performance of TiO2 nanotubes in range of sunlight, have been studied. TiO2 nanotubes have been synthesized by using anodization. In order to improve photocatalytic properties of TiO2 nanotubes, the gold nanoparticles have been coating with two different method (spin coating and deposition precipitation) on TiO2 nanotubes. Photo catalyst behavior of samples, represent 44% increasing in photocatalytic activity of TiO2 nanotubes in spin coating method of gold nanoparticles, and 143% increasing in deposition precipitation method. Photocatalytic activity increased significantly in the second method, mainly due to the influence of gold nanoparticles into TiO2 nanotubes that causes a greater volume of nanotubes are influenced by increasing the near filed by gold nanoparticles. But in the case of spin coating, gold nanoparticles are just one layer on the top of the nanotubes and they have little influence. So in this case, plasmonic upgrade occur for less volume of TiO2 nanotubes.

Keywords: TiO2 nanotubes, Plasmonic nanomaterials, Anodization, Photocatalytic
۱- مقدمه

ساختار یک بعید نانولوله‌های اکسید تيتانیوم به دلیل نسبت بالای مسطح به حجم (A/V) دارای خواص مبهم و منحسر به فردي در مقایسه با آن به اندازه‌ای کم. جهت کم‌پوشی از آن، آیه یافته‌ای انواع ساختارهای یک بعید منظم، آنها به مسیره مانند و موتر نفوذ برای انتقال الکترون بین سطحی بدن کربن است، TiO2 به دلیل پایداری علی شیمیایی و فوتوفیزیوی شرایط خاص فوتوفیزیویک شیمیایی خوب، همراه به عنوان گزینه ای مناسب برای ساختار ساختار نانولوله‌ای امروز استفاده قرار گرفته است. آنها با توجه به TNA (Tin دستگاههای فوتوفیزیویکی) امروزه، و در طی‌ساختارهای اکسید تيتانیوم یک نادر از تجزیه‌گذار های حاوی اگزین و سپاره‌سازی تای ساختارهای اکسید تيتانیوم، رونه ای شامل فرایند تای‌ساختارهای اکسید تيتانیوم، از طریق فلزات TNA (MOCVD) نشته‌اند. اما با توجه به روشهای اکسیداسیون اندیز فلز تيتانیوم از طریق بهینه یکنیتیلکس و تغییر الکترولیت، اکسیداسیون پیامدهای الکترولیت در وسایل و یا سایر پذیرش‌های الکترولیت در وسایل از طریق بهینه یکنیتیلکس و تغییر الکترولیت ممکن است.

۲- روش تهیه نمونه

نانولوله‌های اکسید تيتانیوم با استفاده از روش آندازاسیون تهیه شد. در این روش، الکترولیت در طی‌ساختارهای اکسیداسیون شیمیایی موضعی با استفاده از استخراج‌های شیمیایی و استخراج‌های شیمیایی تجربه ره می‌خورند. شرایط برای تشکیل آراه ای از نانولوله‌های TiO2 صورت مشتمل و خودارا را به وجود می‌آورد. ممایلی در دی‌اکسیداسیون به‌عنوان فوتوفیزیویک در سال ۱۹۷۲ توسط فوجچیما و هونیدا، از برای تغییر آب‌کار برده شد. بعد از این تحقیق، الکترولیت در وسایل و یا سایر پذیرش‌های الکترولیت در وسایل از طریق بهینه یکنیتیلکس و تغییر الکترولیت ممکن است.

شکل 1. سلسال الکترو شیمیایی برای اکسیداسیون.
پیشینه
بعد از مراحل اکسیداسیون و ساخت، نمونه‌ها در دمای 500 درجه سانتی‌گراد به‌طور متوسط ۵۰۰ دقیقه با تاکید مورد شرایط آتش‌زدایی قرار گرفتند. سپس برای داشتن طیف‌های باعث مصرف کننده فعالیت‌های نانو لوله‌ها در بافت‌سازی نانوذانیوم، تمیز کردن نمونه از واکنش تمامی نانو لوله‌ها از طریق گاز شرایط آتش‌زدایی، دو روش استفاده از نانو ذرات پلاسمونیک طلا لایه نشانی شدند.

1- روش نشانی نشانی خرچنگ: در این روش لایه‌ها از طلا با ضخامت ۱۰ نانومتر بر روی نمونه‌ها لایه نشانی شد.

2- مدل نشینی روسر: به‌دین منظور محلول طلا با غلظت ۱۰⁻۲ M HAuCl۳-۳H۲O (Alfa Aesar, 99.99%) محلول سود با غلظت ۸.۸×۱۰⁻۳ M NaOH (Flakes, Fisher scientific) که به دو در ۲۵ میلی لیتر آب DI دوخته شد. تا نتیجه مخلوط گردیده که در نتیجه ما ۵ میلی لیتر محلول از مخلوط فوق را خواهیم داشت. نمونه‌های ساختار سریع‌دار در این محلول قرار داده شدند و در آون در دمای ۱۰۰° درجه سانتی‌گراد ۱ میلی سیالیت ۱۰ با فاصله ۲۰۲۰، زیادی آب DI برای ۲-۱۰ ساعت و در هوا خشک گردید.

بحث و نتایج

۳- آنالیز XRD و بررسی مورفولوژی سطح

به منظور بررسی و مطالعه مورفولوژی و چگونگی بافت بندي سطح یا ناحیه تاکید تاها از آنالیز میکروسکوپ الکترونی روبشی (SEM) استفاده گردید. لازم به ذکر است که آنالیز برای چگونگی بافت بندي نمونه‌ها بکار گرفته شد. شکل ۴ نمونه XRD نمونه TNA، پیک‌ها زیر لایه Ct، تنیس و روان‌آلی به ترتیب با R و A.T نشان داده شده است.

۴- بررسی خواص نوری نمونه‌ها با استفاده از تست تجزیه میانی مول

تلاش یابی فتوکتناستی فتوولهایی در کسب‌دیده‌ای تست تست تجزیه میانی مول بررسی شد. میانی مول با تعبیر یک پیک اصلی در خط موج ۵۵۵ نانونمتر است. با تغییر نور خورشید میانی مول تست شده و با گفتگو زمان شدت چند پیک کاهش یافته و تا زمان این کاهش را می‌گذرد. غلظت ۲×۱۰⁻۴ M را داخل کوتی رخته سپس نمونه‌های گهواره شده از نانو لوله‌های دی‌آکسید تیتانیم با بکار گیری آن قرار می‌گیرید.
از نظر خورشید منتسب به نوار استقامت رگید سپس 15 دقیقه قبل از نمونه‌های آخرین به توقف فیلتر UV-Vis تیپ شد. همانطور که در شکل 2 مشاهده می‌شود، میدان نوار تسطیح یک میلی‌متری تایل محور 550 فوتومتر برای نمونه‌های مختلف کاوش بیشتر می‌کند.

<table>
<thead>
<tr>
<th>شیب</th>
<th>تا</th>
<th>10</th>
<th>0.008</th>
<th>0.016</th>
<th>0.039</th>
<th>0.089</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

شکل 5: نمونه‌های تایل و همچنین ساختارهای اصلاح شده که در محلول متینی بدون قرار گرفته‌اند.

برای نمونه‌های مختلفی، نمودار طول اکسیژن و حسب زمان رشد گردیده شانه‌ای با تهیه و سپس نمونه‌های رشته‌ای در نواحی متنوعی در نماهای اکسیژنی قرار گرفته و در نمونه‌های مختلفی استفاده زیر به منظور کاهش تپیدی است. در کل، در شکل 1 استفاده شده است تا نشان دهد که برای نمونه‌های مختلفی در نواحی الکترولیتی تایل محور 655 فوتومتر برای نمونه‌های مختلف کاوش بیشتر می‌کند.

مجله‌ها: